Skip to main content

Advertisement

Log in

Blockage of PAK1 alleviates the proliferation and invasion of NSCLC cells via inhibiting ERK and AKT signaling activity

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

P21-activated kinase 1 (PAK1), a serine/threonine protein kinase which functions downstream of RAC and CDC42 GTPase, is activated by a variety of stimuli, including RAS and other growth signaling factors. The extracellular signal kinase (ERK) and protein kinase B (AKT) signal pathways have been implicated in the pathogenesis of cancers. Whether PAK1 is sensitive to KRAS mutation signals and plays a role through ERK and AKT signaling pathways in NSCLC needs to be studied.

Methods

The expression of PAK1, ERK and AKT was detected in both lung cancer cell lines and clinical samples. PAK1 RNA interference and specific inhibitor of PAK1(IPA-3) were applied to lung cancer cell lines and mouse xenograft tumors. Cell growth was measured by MTT and colony formation assays. Cell migration and invasion were detected by wound healing and transwell assays. RAS mutation was detected by Taqman probe method. Correlation between KRAS, PAK1, ERK and AKT activities was analyzed in lung cancer patients.

Results

PAK1 was highly expressed not only in RAS mutant but also in RAS wild-type lung cancer cells. Using specific inhibitor of PAK1, IPA-3 and PAK1 RNA interference, cell proliferation, migration and invasion of lung cancer cells were reduced significantly, accompanied by decreased activities of ERK and AKT. Dual inhibition of ERK and AKT suppressed these cellular processes to levels comparable to those achieved by reduction in PAK1 expression. In NSCLC patients, PAK1 was not correlated with KRAS mutation but was significantly positively correlated with pERK and pAKT.

Conclusion

PAK1 played roles in NSCLC proliferation and invasion via ERK and AKT signaling and suggested a therapeutic target for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917. https://doi.org/10.1002/ijc.25516.

    Article  CAS  PubMed  Google Scholar 

  2. Grivaux M, Zureik M, Marsal L, Asselain B, Peureux M, Chavaillon JM, et al. Five-year survival for lung cancer patients managed in general hospitals. Rev Mal Respir. 2011;28(7):e31–e3838. https://doi.org/10.1016/j.rmr.2008.07.001.

    Article  CAS  PubMed  Google Scholar 

  3. Guo M, Tomoshige K, Meister M, Muley T, Fukazawa T, Tsuchiya T, et al. Gene signature driving invasive mucinous adenocarcinoma of the lung. EMBO Mol Med. 2017;9(4):462–81. https://doi.org/10.15252/emmm.201606711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vijayalakshmi R, Krishnamurthy A. Targetable, "driver" mutations in non-small cell lung cancer. Indian J Surg Oncol. 2011;2(3):178–88. https://doi.org/10.1007/s13193-011-0108-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu JS, Che XM, Chang S, Qiu GL, He SC, Fan L, et al. β-elemene enhances the radiosensitivity of gastric cancer cells by inhibiting Pak1 activation. World J Gastroenterol. 2015;21(34):9945–56. https://doi.org/10.3748/wjg.v21.i34.9945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ong CC, Gierke S, Pitt C, Sagolla M, Cheng CK, Zhou W, et al. Small molecule inhibition of group I p21-activated kinases in breast cancer induces apoptosis and potentiates the activity of microtubule stabilizing agents. Breast Cancer Res. 2015;17(1):59. https://doi.org/10.1186/s13058-015-0564-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci USA. 2011;108(17):7177–82. https://doi.org/10.1073/pnas.1103350108.

    Article  PubMed  Google Scholar 

  8. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel ES. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56(5):1515–25. https://doi.org/10.1002/mc.22611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen MJ, Wu DW, Wang YC, Chen CY, Lee H. PAK1 confers chemoresistance and poor outcome in non-small cell lung cancer via β-catenin-mediated stemness. Sci Rep. 2016;6:34933. https://doi.org/10.1038/srep34933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hofmann C, Shepelev M, Chernoff J. The genetics of Pak. J Cell Sci. 2004;117(Pt19):4343–54. https://doi.org/10.1242/jcs.01392.

    Article  CAS  PubMed  Google Scholar 

  11. Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009;28(1–2):51–63. https://doi.org/10.1007/s10555-008-9168-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Higuchi M, Onishi K, Kikuchii C, Gotoh Y. Scaffolding function of PAK in the PDK1–Akt pathway. Nat Cell Biol. 2008;10(11):1356–64. https://doi.org/10.1038/ncb1795.

    Article  CAS  PubMed  Google Scholar 

  13. Mao K, Kobayashi S, Jaffer ZM, Huang Y, Volden P, Chernoff J, et al. Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J Mol Cell Cardiol. 2008;44(2):429–34. https://doi.org/10.1016/j.yjmcc.2007.10.016.

    Article  CAS  PubMed  Google Scholar 

  14. Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, Du J, et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene. 2012;31(29):3397–408. https://doi.org/10.1038/onc.2011.515.

    Article  CAS  PubMed  Google Scholar 

  15. Liu F, Cheng Z, Li X, Li Y, Zhang H, Li J, et al. A novel Pak1/ATF2/miR-132 signaling axis is involved in the hematogenous metastasis of gastric cancer cells. Mol Ther Nucleic Acids. 2017;8:370–82. https://doi.org/10.1016/j.omtn.2017.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li LH, Wu GY, Lu YZ, Chen XH, Liu BY, Zheng MH, et al. p21-activated protein kinase 1 induces the invasion of gastric cancer cells through c-Jun NH2-terminal kinase-mediated activation of matrix metalloproteinase-2. Oncol Rep. 2017;38(1):193–200. https://doi.org/10.3892/or.2017.5643.

    Article  CAS  PubMed  Google Scholar 

  17. Lv D, Li L, Lu Q, Li Y, Xie F, Li H, et al. PAK1-cofilin phosphorylation mediates human lung adenocarcinoma cells migration induced by apelin-13. Clin Exp Pharmacol Physiol. 2016;43(5):569–79. https://doi.org/10.1111/1440-1681.12563.

    Article  CAS  PubMed  Google Scholar 

  18. Rettig M, Trinidad K, Pezeshkpour G, Frost P, Sharma S, Moatamed F, et al. PAK1 kinase promotes cell motility and invasiveness through CRK-II serine phosphorylation in non-small cell lung cancer cells. PLoS ONE. 2012;7:e4. https://doi.org/10.1371/journal.pone.0042012.

    Article  CAS  Google Scholar 

  19. Jang I, Jeon BT, Jeong EA, Kim EJ, Kang D, Lee JS, et al. Pak1/LIMK1/cofilin pathway contributes to tumor migration and invasion in human non-small cell lung carcinomas and cell lines. Korean J Physiol Pharmacol. 2012;16(3):159–65. https://doi.org/10.4196/kjpp.2012.16.3.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu DW, Wu TC, Chen CY, Lee H. PAK1 is a novel therapeutic target in tyrosine kinase inhibitor-resistant lung adenocarcinoma activated by the PI3K/AKT signaling regardless of EGFR mutation. Clin Cancer Res. 2016;22(21):5370–82. https://doi.org/10.1158/1078-0432.CCR-15-2724.

    Article  CAS  PubMed  Google Scholar 

  21. Singhal R, Kandel ES. The response to PAK1 inhibitor IPA3 distinguishes between cancer cells with mutations in BRAF and RAS oncogenes. Oncotarget. 2012;3(7):700–8. https://doi.org/10.18632/oncotarget.587.

    Article  PubMed  PubMed Central  Google Scholar 

  22. McDaniel AS, Allen JD, Park SJ, Jaffer ZM, Michels EG, Burgin SJ, et al. Pak1 regulates multiple c-Kit mediated RAS-MAPK gain-in-function phenotypes in Nf1+/− mast cells. Blood. 2008;112(12):4646–54. https://doi.org/10.1182/blood-2008-04-155085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huynh N, Liu KH, Baldwin GS, He H. P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and AKT-dependent pathways. Biochim Biophys Acta. 2010;1803(9):1106–13. https://doi.org/10.1016/j.bbamcr.2010.05.007.

    Article  CAS  PubMed  Google Scholar 

  24. Tabusa H, Brooks T, Massey AJ. Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling. Mol Cancer Res. 2013;11(2):109–21. https://doi.org/10.1158/1541-7786.MCR-12-0466.

    Article  CAS  PubMed  Google Scholar 

  25. Gan J, Zhang Y, Ke X, Tan C, Ren H, Dong H, et al. Dysregulation of PAK1 is associated with DNA damage and is of prognostic importance in primary esophageal small cell carcinoma. Int J Mol Sci. 2015;16(6):12035–50. https://doi.org/10.3390/ijms160612035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mortazavi F, Lu J, Phan R, Lewis M, Trinidad K, Aljilani A, et al. Significance of KRAS/PAK1/Crk pathway in non-small cell lung cancer oncogenesis. BMC Cancer. 2015;15:381. https://doi.org/10.1186/s12885-015-1360-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Viaud J, Peterson JR. An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Mol Cancer Ther. 2009;8(9):2559–655. https://doi.org/10.1158/1535-7163.MCT-09-0102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–2. https://doi.org/10.1126/science.1072682.

    Article  CAS  Google Scholar 

  29. Roberts PJ, Der CJ. Targeting the raf-mek-erk mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310. https://doi.org/10.1038/sj.onc.1210422.

    Article  CAS  PubMed  Google Scholar 

  30. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–74. https://doi.org/10.1016/j.cell.2007.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase akt pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501. https://doi.org/10.1038/nrc839.

    Article  CAS  PubMed  Google Scholar 

  32. Park J, Kim JM, Park JK, Huang S, Kwak SY, Ryu KA, et al. Association of p21-activated kinase-1 activity with aggressive tumor behavior and poor prognosis of head and neck cancer. Head Neck. 2015;37(7):953–63. https://doi.org/10.1002/hed.23695.

    Article  PubMed  Google Scholar 

  33. Siu MK, Wong ES, Chan HY, Kong DS, Woo NW, Tam KF, et al. Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: effects on prognosis and cell invasion. Int J Cancer. 2010;127(1):21–31. https://doi.org/10.1002/ijc.25005.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the 13th five-year major new drug innovation project (2016ZX09101005), Shandong province science and technology breakthrough project (2016GSF201043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Song.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

The Shandong Provincial Cancer Research Institute Ethics Committee approved this study.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Written informed consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, P., Song, B., Liu, J. et al. Blockage of PAK1 alleviates the proliferation and invasion of NSCLC cells via inhibiting ERK and AKT signaling activity. Clin Transl Oncol 23, 892–901 (2021). https://doi.org/10.1007/s12094-020-02486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02486-5

Keywords

Navigation