Skip to main content
Log in

Pareto optimality solution of the multi-objective photogrammetric resection-intersection problem

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Reconstruction of architectural structures from photographs has recently experienced intensive efforts in computer vision research. This is achieved through the solution of nonlinear least squares (NLS) problems to obtain accurate structure and motion estimates. In Photogrammetry, NLS contribute to the determination of the 3-dimensional (3D) terrain models from the images taken from photographs. The traditional NLS approach for solving the resection-intersection problem based on implicit formulation on the one hand suffers from the lack of provision by which the involved variables can be weighted. On the other hand, incorporation of explicit formulation expresses the objectives to be minimized in different forms, thus resulting in different parametric values for the estimated parameters at non-zero residuals. Sometimes, these objectives may conflict in a Pareto sense, namely, a small change in the parameters results in the increase of one objective and a decrease of the other, as is often the case in multi-objective problems. Such is often the case with error-in-all-variable (EIV) models, e.g., in the resection-intersection problem where such change in the parameters could be caused by errors in both image and reference coordinates. This study proposes the Pareto optimal approach as a possible improvement to the solution of the resection-intersection problem, where it provides simultaneous estimation of the coordinates and orientation parameters of the cameras in a two or multistation camera system on the basis of a properly weighted multi-objective function. This objective represents the weighted sum of the square of the direct explicit differences of the measured and computed ground as well as the image coordinates. The effectiveness of the proposed method is demonstrated by two camera calibration problems, where the internal and external orientation parameters are estimated on the basis of the collinearity equations, employing the data of a Manhattan-type test field as well as the data of an outdoor, real case experiment. In addition, an architectural structural reconstruction of the Merton college court in Oxford (UK) via estimation of camera matrices is also presented. Although these two problems are different, where the first case considers the error reduction of the image and spatial coordinates, while the second case considers the precision of the space coordinates, the Pareto optimality can handle both problems in a general and flexible way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ameller MA, Triggs B, Quan L (2000) Camera pose revisited—new linear algorithms. European Conference on Computer Vision (ECCV)

  • Atkinson KB (1996) Close range photogrammetry and machine vision. Whittles Publishers

  • Awange JL, Kiema JBK (2013) Environmental geoinformatics—monitoring and management. Springer, Berlin

    Google Scholar 

  • Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, Berlin

    Google Scholar 

  • Awange JL, Grafarend EW, Pala´ncz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics. Springer, Berlin

  • Bartoli A (2002) A unified framework for quasi-linear bundle adjustment. ICPR02—In: Proceedings of the sixteenth IAPR international conference on pattern recognition, vol Ii, Quebec City, Canada, pp 560–563

  • Börlin N (2002) Comparison of resection: intersection algorithms and projection geometries in radiostereometry. ISPRS J Photogramm Remote Sens 56:390–400. doi:10.1016/S0924-2716(02)00068-0

    Article  Google Scholar 

  • Censor Y (1977) Pareto optimality in multiobjective problems. Appl Math Optim 4:41–59

    Article  Google Scholar 

  • Chen Q, Medioni G (1999) Efficient iterative solution to Mview projective reconstruction In: Computer vision and pattern recognition, 1999, IEEE computer society conference. doi:10.1109/CVPR.1999.784608

  • Coello CA (1999) A comprehensive survey of evolutionary-based multi-objective optimization techniques. Knowl Inf Syst 1(3):269–308

    Google Scholar 

  • Dunn E, Olague G, Lutton E, Schoenauer M (2004) Pareto optimal sensing strategies for an active vision system. In: IEEE congress on evolutionary computation, 19–23 June 2004, vol 1, Portland, Oregon, USA, pp 457–463

  • Fekete K, Schrott P (2008) Qualification of optical capturing devices for data gathering phase of the face reconstruction process. In: Proc. of the third Hungarian conference on biomechanics, Budapest, Hungary, pp 83–88

  • Felus YA, Schaffrin B (2005) Performing similarity transformations using the errors-in-variable model, Baltimore, Maryland

  • Forsyth DA, Ponce J (2003) Computer vision—a modern approach. Pearson Education

  • Geisler J, Trächtler A (2009) Control of the Pareto optimality of systems with unknown disturbances. In: IEEE international conference on control and automation christchurch, 9–11 December, New Zealand, pp 695–700

  • Golub GH, van Loan CF (1980) An analysis of the total least-squares problem. SIAM J Numer Anal 17(6):883–893

    Article  Google Scholar 

  • Grafarend E, Awange JL (2012) Applications of linear and nonlinear models. Springer, New York, Berlin

    Book  Google Scholar 

  • Grafarend E, Shan J (1997a) Closed form solution to the P4P or the three dimensional resection problem in terms of Möbius barycentric coordinates. J Geod 71:217–231. doi:10.1007/s001900050089

    Article  Google Scholar 

  • Grafarend E, Shan J (1997b) Closed form solution to the twin P4P or the combined three dimensional resection-intersection problem in terms of M¨obius barycentric coordinates. J Geod 71(4):232–239. doi:10.1007/s001900050090

    Article  Google Scholar 

  • Grafarend E, Shan J (1997c) Estimable quantities in projective geometry I and II. Zeitschrift fuer Vermessungswessen 122(Heft 5 and 7):218–225, 323–333

    Google Scholar 

  • Grussenmeyer P, Al Khalil O (2002) Solution of exterior orientation in photogrammetry, a review. Photogramm Rec- Int J Photogramm 17(100):615–634. doi:10.1111/j.1477-9730.2002.tb01907.x

    Google Scholar 

  • Han JY, Guo J, Chou JY (2011) A direct determination of the orientation parameters in the collinearity equations. IEEE Geo Sci Rem Sens Letts 8:313–316. doi:10.1109/LGRS.2010.2066955

    Article  Google Scholar 

  • Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press

  • Hochman HM, Rodgers JD (1969) Pareto optimal redistribution, Part 1. Am Econ Rev 59(4):542–557

    Google Scholar 

  • Lin JG (1976) Multiple-objective problems—Pareto-optimal solutions by method of proper equality constraints. IEEE Trans Automat Contr AC-21:641–650

    Google Scholar 

  • Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscipl Optim 26:369–395

    Article  Google Scholar 

  • McGlone JC (1989) Analytic data-reduction schemes in nontopographic photogrammetry. American society of photogrammetry and remote sensing, chapter 4, vol 554, Falls Church, Virginia, pp 37–55

  • Mikhail EM, Bethel JS, McGlone CJ (2001) Introduction to modern photogrammetry. Wiley

  • Mirza P, Almir K (2010) Pareto-based genetic algorithm in multi-objective geospatial analysis. In:MIPRO, 2010 proceedings of the 33rd international convention, 24–28 May 2010, Opatija, Croatia, pp 680–685

  • Mahamud S, Herbert M, Omori Y, Ponce J (2001) Provably-convergent iterative methods for projective structure and motion. In: Computer vision and pattern recognition, 2001, CVPR 2001, Proceedings of the 2001 IEEE computer society conference page(s): I-1018 - I-1025, vol 1. doi:10.1109/CVPR.2001.990642

  • Neitzel F (2010) Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J Geod 84(12):751–762. doi:10.1007/s00190-010-0408-0

    Article  Google Scholar 

  • Olague G, Trujillo L (2012) Interest point detection through multiobjective genetic programming. Appl Soft Comp 12(8):2566–2582. doi:10.1016/j.asoc.2012.03.058

    Article  Google Scholar 

  • Olague G, Trujillo L (2011) Evolutionary-computer-assisted design of image operators that detect interest points using genetic programming. Image Vis Comput 29:484–498. doi:10.1016/j.imavis.2011.03.004

    Article  Google Scholar 

  • Olsson C, Byröd M, Kahl F (2009) Globally optimal least squares solutions for quasiconvex 1D vision problems. In: Salberg A-B, Hardeberg JY, Jenssen R (eds) SCIA 2009, LNCS 5575, pp 686–695

  • Paláncz B, Awange JL (2012) Application of Pareto optimality to linear models with errors-in-all-variables. J Geod 86(7):531–545. doi:10.1007/s00190-011-0536-1

    Article  Google Scholar 

  • Pressl B, Mader C, Wieser M (2010) User-specific web-based route planning. In: Miesenberger K et al (eds) ICCHP 2010, Part I, LNCS 6179. Springer, Berlin, Heidelberg, pp 280–287

  • Remondino F (2002) 3-D reconstruction of articulated objects from uncalibrated images, USA

  • Saadatseresht M,Mansourian A, Taleai M(2009) Evacuation planning using multi-objective evolutionary optimization approach. Eur J Oper Res 198:305–314. doi:10.1016/j.ejor.2008.07.032

    Article  Google Scholar 

  • Schaffrin B, Snow K (2010) Total least-squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Algebra Appl 432:2061–2076. doi:10.1016/j.laa.2009.09.014

    Article  Google Scholar 

  • Sonnier DL (2010) A Pareto-optimality based routing and wavelength assignment algorithm for WDM networks. J Comp Sci Coll Arch 25(5):118–123

    Google Scholar 

  • Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment—a modern synthesis. Springer, London

    Google Scholar 

  • Werner T, Schaffalitzky F, Zisserman A (1999) Automated architecture reconstruction fromclose-range photogrammetry. In: The proceedings of the international CIPA symposium, 2001. http://www.robots.ox.ac.uk/vgg/publications/papers/werner01a.pdf. Accessed 19 Oct 2012

  • Warr PG (1982) Pareto optimal redistribution and private charity. J Public Econ 19(1):131–138. doi:10.1016/0047-2727(82)90056-1

    Article  Google Scholar 

  • Wilson PB, Macleod MD (1993) Low implementation cost IIR digital filter design using genetic algorithms. In: IEE/IEEE workshop on natural algorithms in signal processing. Chelmsford, UK, pp 4/1–4/8

  • Kwon Y-H (1998) DLT method. www.kwon3d.com/theory/dlt/dlt.html. Accessed 17 Nov 2011

  • Zitler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength of Pareto approach. IEEE Trans Evol Comput 3(4):257–271. doi:10.1109/4235.797969

    Article  Google Scholar 

  • Zwanzig S (2006) On an application of deconvolution techniques to local linear regression with errors in variables. Department of Mathematics Uppsala University. U.U.D.M. Report 2006:12

Download references

Acknowledgements

The author are grateful to the Editor Prof. Babaie and the anonymous reviewers for their comments that helped improve the quality of the manuscript. Special thanks to Prof. Han for providing their measurements data that was used in one of the examples in this study. They are further grateful to Dr. Kevin Fleming for proof reading the manuscript, but take full responsibility for any errors. J.L. Awange acknowledges the financial support of the Alexander von Humboldt Foundation (Ludwig Leichhardt’s Memorial Fellowship) and a Curtin Research Fellowship. He is grateful for the warm welcome and the conducive working atmosphere provided by his host, Prof. Bernhard Heck and his team, at the Geodetic Institute, Karlsruhe Institute of Technology (KIT). This is a TiGER publication No. 438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Awange.

Additional information

Communicated by: H. A. Babaie

Appendix

Appendix

Summary of the steps of the algorithm

Read input data

The coordinates of the points on the photo-planes:

$$x_{j}^{(i)},y_{j}^{(i)} ,\text{}j = 1, 2,\text{...}n,\text{ }i = 1,2,\text{...}m$$

The space coordinates:

$$X_{j},Y_{j},Z_{j}, j = 1, 2,\text{...}n,$$

where n is the number of points on a photo-plane, and m is the number of the photo-planes.

Defining the objective functions

  1. a)

    for the photo-planes:

    $$\begin{array}{lll} G_{\text{xy}}\left(\pi _1,\pi _2,\text{...}\pi _m\right)\\ \quad= \displaystyle\sum _{i=1}^m \sum _{j=1}^n w_{x_j}\left(x_j^{(i)}-p_x\left(\pi _i,X_j,Y_j,Z_j\right)\right)^2\\ \quad\quad{\kern6pt} +w_{y_j}\left(y_j^{(i)}-p_y\left(\pi _i,X_j,Y_j,Z_j\right)\right)^2 \end{array} $$
  2. b)

    for the space coordinates

    • use one-point intersection to express the space coordinates explicitely, see Eq. 14:

      $$\begin{array}{lll} G_{\text{XYZ}}\left(\pi _1,\pi _2,\text{...}\pi _m\right)\\ \quad= \sum\limits_{j=1}^n W_{X_j}\left(X_j^{(i)}-p_X\left(\pi _1,\pi _2,\text{...}\pi _m,x_j^{(i)},y_j^{(i)}\right)\right)^2\\ \quad\quad+W_{Y_j}\left(Y_j^{(i)}-p_Y\left(\pi _1,\pi _2,\text{...}\pi _m,x_j^{(i)},y_j^{(i)}\right)\right)^2\\ \quad\quad+W_{Z_j}\left(Z_j^{(i)}-p_Z\left(\pi _1,\pi _2,\text{...}\pi _m,x_j^{(i)},y_j^{(i)}\right)\right)^2 \end{array} $$
    • alternatively use implicit expression of the space coordinates as constraint while minimizing the adjustments of the space coordinates, see Eq. 20.

      $$\begin{array}{rll} \text{ }G_{\text{XYZ}} \left(\pi _1,\pi _2,\text{...}\pi _m\right)&=&\sum\limits_{j=1}^n W_{X_j}\Delta \text{X}_j^2+W_{Y_j}\Delta \text{Y}_j^2\\ &&+W_{Z_j}\Delta \text{Z}_j^2, \end{array} $$

with the constraints

$$\begin{array}{lll} P_X\left(\pi _i,X_j+\Delta \text{X}_j,Y_j+\Delta \text{Y}_j,Z_j+\Delta \text{Z}_j,x_j^{(i)},y_j^{(i)}\right)\\ \quad=0, j = 1\text{..}n \end{array} $$
$$\begin{array}{lll} P_Y\left(\pi _i,X_j+\Delta \text{X}_j,Y_j+\Delta \text{Y}_j,Z_j+\Delta \text{Z}_j,x_j^{(i)},y_j^{(i)}\right)\\ \quad=0, j = 1\text{..}n. \end{array} $$

Computing the dimensionless form of the conflicting objective functions

  1. a)

    Minimize \(\,G_{\text {xy} }\,\text {to} \,\text {get} \,\pi _1^{(\text {xy})},\pi _2^{(\text {xy})},\text {...}\pi _m^{(\text {xy})}\)

  2. b)

    Minimize \(G_{\text {XYZ} }\,\text {to} \,\text {get} \,\pi _1^{(\text {XYZ})},\pi _2^{(\text {XYZ})},\text {...}\pi _m^{(\text {XYZ})}\)

  3. c)

    The maximum values of the objective functions

    $$G_{\text{xymax}}=G_{\text{xy}}\left(\pi _1^{(\text{XYZ})},\pi _2^{(\text{XYZ})},\text{...}\pi _m^{(\text{XYZ})}\right)$$
    $$G_{\text{XYZmax}}=G_{\text{XYZ}}\left(\pi _1^{(\text{xy})},\pi _2^{(\text{xy})},\text{...}\pi _m^{(\text{xy})}\right)$$
  4. d)

    Compute the dimensionless forms

    $$\tilde{G}_{\text{xy}}\left(\pi _1,\pi _2,\text{...}\pi _m\right)=\frac{G_{\text{xy}}\left(\pi _1,\pi _2,\text{...}\pi _m\right)-G_{\text{xymin}}}{G_{\text{xymax}}-G_{\text{xymin}}}$$

    and

    $$\tilde{G}_{\text{XYZ}}\left(\pi _1,\pi _2,\text{...}\pi _m\right)=\frac{G_{\text{XYZ}}(\pi _1,\pi _2,\text{...}\pi _m)-G_{\text{XYZmin}}}{G_{\text{XYZmax}}-G_{\text{XYZmin}}}$$

Computing the Pareto set

  1. a)

    Set discrete values λ k \(\in \)[0, 1], k \(=\) 1,2, ...N

  2. b)

    Minimize the mono-objective function for all λ k

    $$\begin{array}{rll} \tilde{G}\left(\pi _1,\pi _2,\text{...}\pi _m,\lambda _k\right)&=& \lambda _k \tilde{G}_{\text{XYZ}}\left(\pi _1,\pi _2,\text{...}\pi _m\right)\\ &&+\left(1-\lambda _k\right)\tilde{G}_{\text{xy}}\left(\pi _1,\pi _2,\text{...}\pi _m\right) \end{array} $$

    to get the Pareto-set of ( λ k , Π1(k), Π2(k), ...Π m(k)) , k \(=\) 1,2, ...N

Computing the Pareto front

  1. a)

    Set the interpolation functions: Π 1(\(\lambda \)), Π 2(\(\lambda \))... Π m (\(\lambda \)) from the discrete values

  2. b)

    Substitute these functions into the objective functions,

    $$\tilde{G}_{\text{xy}}(\lambda )=\tilde{G}_{\text{xy}}\left(\pi _1(\lambda ),\pi _2(\lambda ),\text{...}\pi _m(\lambda )\right)$$

    and

    $$\tilde{G}_{\text{XYZ}}(\lambda )=\tilde{G}_{\text{XYZ}}\left(\pi _1(\lambda ),\pi _2(\lambda ),\text{...}\pi _m(\lambda )\right)$$

    Then we get the Pareto-front represented in param- etric form: \(\tilde {G}_{\rm xy}\)(λ) - \(\tilde {G}_{\rm XYZ}\)(λ)

Selecting a single solution

  1. a)

    \(\lambda \) = 0

    $$\begin{array}{lll} \textrm{we get }\tilde{G}_{\min }= \tilde{G}_{\text{xymin}}\textrm{ therefore the point} \\ \quad\textrm{ of the Pareto }-\textrm{ front for }\lambda =0\, \textrm{is}\\ \quad\quad{} \left(\tilde{G}_{\text{XYZmax}},\text{ }\tilde{G}_{\text{xymin}}\right). \end{array} $$
  2. b)

    \(\lambda \) = 1

    $$\begin{array}{lll} \textrm{we get }\tilde{G}_{\min }= \tilde{G}_{\text{XYZmin}}\textrm{ therefore the point} \\ \quad{} \textrm{ of the Pareto - front - front for }\lambda =1\, \textrm{is}\\ \quad\quad \left(\tilde{G}_{\text{XYZmin}}, \tilde{G}_{\text{xymax}}\right). \end{array} $$

    Consequently to minimize the error of the coordinates of the photo-planes we should select a point of the Pareto-front represented by the parameter λ \(<<\) 1, and vica versa to minimize the error of the space coordinates one should select a point of the Pareto-front with λ \(>>\) 0.This is therefore a trade-off job for the decision maker.

  3. c)

    compute the camera parameters \(\pi _i^*\) employing the selected \(\lambda ^*\) as \(\pi _i^*(\lambda ^*)\) for i \(=\) 1,2,\(\ldots \)m.

Selecting the Pareto-balanced solution

This solution can minimize the overall errors of the coordinates of photo-planes as well as the space coordinates. The point of the Pareto-front representing this solution is the closest point to the ideal point (0, 0), which represents zero error for \(\tilde {G}_{\rm xy}\) as well as for \(\tilde {G}_{\rm XYZ}\).

  1. a)

    use L 1norm

    $$\underset{\lambda }{\min }\,\tilde{G}_{\text{xy}}(\lambda )+\tilde{G}_{\text{XYZ}}(\lambda )\longrightarrow \lambda ^{\text{*}}$$
  2. b)

    alternatively use L 2norm

    $$\underset{\lambda }{\min }\sqrt{\left(\tilde{(G}_{\text{xy}}(\lambda )\right)^2+\left(\tilde{G}_{\text{XYZ}}(\lambda )\right)^2}\longrightarrow \lambda ^{\text{*}}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paláncz, B., Awange, J.L. Pareto optimality solution of the multi-objective photogrammetric resection-intersection problem. Earth Sci Inform 6, 1–20 (2013). https://doi.org/10.1007/s12145-012-0107-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-012-0107-x

Keywords

Navigation