Skip to main content
Log in

Assessment of 10B concentration in boron neutron capture therapy: potential of image-guided therapy using 18FBPA PET

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objectives

In boron neutron capture therapy (BNCT) for cancer, the accurate estimation of 10B tissue concentrations, especially in neighboring normal organs, is important to avoid adverse effects. The 10B concentration in normal organs after loading with 10B, however, has not been established in humans. In this study, we performed 4-borono-2-[18F]-fluoro-phenylalanine (18FBPA) PET in healthy volunteers and estimated the chronological changes in the 10B concentrations of normal organs.

Methods

In 6 healthy volunteers, whole-body 18FBPA PET scans were repeated 7 times during 1 h, and the mean 18FBPA distributions of 13 organs were measured. Based on the 18FBPA PET data, we then estimated the changes in the 10B concentrations of the organs when the injection of a therapeutic dose of 10BPA–fructose complex (10BPA–fr; 30 g, 500 mg/kg body weight) was assumed.

Results

The maximum mean 18FBPA concentrations were reached at 2–6 min after injection in all the organs except the brain and urinary bladder. The mean 18FBPA concentration in normal brain plateaued at 24 min after injection. When the injection of a therapeutic dose of 10BPA–fr was assumed, the estimated mean 10B concentration in the kidney increased to 126.1 ± 24.2 ppm at 3 min after injection and then rapidly decreased to 30.9 ± 7.4 ppm at 53 min. The estimated mean 10B concentration in the bladder gradually increased and reached 383.6 ± 214.7 ppm at 51 min. The mean 10B concentration in the brain was estimated to be 7.6 ± 1.5 ppm at 57 min.

Conclusions

18FBPA PET has a potential to estimate 10B concentration of normal organs before neutron irradiation of BNCT when several assumptions are validated in the future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kawabata S, Miyatake S, Nonoguchi N, Hiramatsu R, Iida K, Miyata S, et al. Survival benefit from boron neutron capture therapy for the newly diagnosed glioblastoma patients. Appl Radiat Isot. 2009;67:S15–8.

    Article  CAS  PubMed  Google Scholar 

  2. Miyatake S, Kawabata S, Hiramatsu R, Furuse M, Kuroiwa T, Suzuki M. Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: four cases. Radiat Oncol. 2014;. doi:10.1186/1748-717X-9-6.

    Google Scholar 

  3. Suzuki M, Kato I, Aihara T, Hiratsuka J, Yoshimura K, Niimi M, et al. Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer. J Radiat Res. 2014;55:146–53.

    Article  CAS  PubMed  Google Scholar 

  4. Mishima Y, Honda C, Ichihashi M, Obara H, Hiratsuka J, Fukuda H, et al. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet. 1989;2:388–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kageji T, Mizobuchi Y, Nagahiro S, Nakagawa Y, Kumada H. Clinical results of boron neutron capture therapy (BNCT) for glioblastoma. Appl Radiat Isot. 2011;. doi:10.1016/j.apradiso.2011.05.029.

    Google Scholar 

  6. Wittig A, Malago M, Collette L, Huiskamp R, Bührmann S, Nievaart V, et al. Uptake of two 10B-compounds in liver metastases of colorectal adenocarcinoma for extracorporeal irradiation with boron neutron capture therapy (EORTC trial 11001). Int J Cancer. 2008;122:1164–71.

    Article  CAS  PubMed  Google Scholar 

  7. Wittig A, Collette L, Appelman K, Bührmann S, Jäckel MC, Jöckel KH, et al. EORTC trial 11001: distribution of two 10B-compounds in patients with squamous cell carcinoma of head and neck, a translational research/phase 1 trial. J Cell Mol Med. 2009;13:1653–65.

    Article  PubMed  Google Scholar 

  8. Detta A, Cruickshank GS. L-Amino acid transporter-1 and boronophenylalanine-based boron neutron capture therapy of human brain tumors. Cancer Res. 2009;69:2126–32.

    Article  CAS  PubMed  Google Scholar 

  9. Watabe T, Ikeda H, Nagamori S, Wiriyasermkul P, Tanaka Y, Naka S, et al. 18FBPA as a tumor-specific probe of L-type amino acid transporter 1 (LAT1): a comparison study with 18F-FDG and 11C-methionine PET. Eur J Nucl Med Mol Imaging 2016 (In press).

  10. Nariai T, Ishiwata K, Kimura Y, Inaji M, Momose T, Yamamoto T, et al. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma. Appl Radiat Isot. 2009;67:S348–50.

    Article  CAS  PubMed  Google Scholar 

  11. Kato I, Fujita Y, Maruhashi A, Kumada H, Ohmae M, Kirihata M, et al. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies. Appl Radiat Isot 2009;67:S37–42.

  12. Hanaoka K, Watabe T, Naka S, Kanai Y, Ikeda H, Horitsugi G, et al. FBPA PET in boron neutron capture therapy for cancer: prediction of 10B concentration in the tumor and normal tissue in a rat xenograft model. EJNMMI Res. 2014;. doi:10.1186/s13550-014-0070-2.

    PubMed  PubMed Central  Google Scholar 

  13. Sakata M, Oda K, Toyohara J, Ishii K, Nariai T, Ishiwata K. Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies. Ann Nucl Med. 2013;27:285–96.

    Article  CAS  PubMed  Google Scholar 

  14. Morris GM, Coderre JA, Hopewell JW, Micca PL, Rezvani M. Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium. Radiother Oncol. 1994;32:144–53.

    Article  CAS  PubMed  Google Scholar 

  15. Morris GM, Coderre JA, Micca PL, Fisher CD, Capala J, Hopewell JW. Central nervous system tolerance to boron neutron capture therapy with p-boronophenylalanine. Br J Cancer. 1997;76:1623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Futamura G, Kawabata S, Siba H, Kuroiwa T, Suzuki M, Kondo N, et al. A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy. Radiat Oncol. 2014;. doi:10.1186/s13014-014-0237-z.

    PubMed  PubMed Central  Google Scholar 

  17. Ono K. An analysis of the structure of the compound biological effectiveness factor. J Radiat Res. 2016. (Epub ahead of print).

  18. Bergenheim AT, Capala J, Roslin M, Henriksson R. Distribution of BPA and metabolic assessment in glioblastoma patients during BNCT treatment: a microdialysis study. J Neurooncol. 2005;71:287–93.

    Article  CAS  PubMed  Google Scholar 

  19. Elowitz EH, Bergland RM, Coderre JA, Joel DD, Chadha M, Chanana AD. Biodistribution of p-boronophenylalanine in patients with glioblastoma multiforme for use in boron neutron capture therapy. Neurosurgery. 1998;42:463–8.

    Article  CAS  PubMed  Google Scholar 

  20. Imahori Y, Ueda S, Ohmori Y, Sakae K, Kusuki T, Kobayashi T, et al. Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part II. Clin Cancer Res. 1998;4:1833–41.

    CAS  PubMed  Google Scholar 

  21. Pisarev MA, Dagrosa MA, Juvenal GJ. Boron neutron capture therapy in cancer: past, present and future. Arq Bras Endocrinol Metabol. 2007;51:852–6.

    Article  PubMed  Google Scholar 

  22. Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, et al. Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot. 2004;61:1069–73.

    Article  CAS  PubMed  Google Scholar 

  23. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochem Biophys Acta. 2001;1514:291–302.

    Article  CAS  PubMed  Google Scholar 

  24. Ishiwata K, Shiono M, Kubota K, Yoshino K, Hatazawa J, Ido T, et al. A unique in vivo assessment of 4-[10B]borono-l-phenylalanine in tumour tissues for boron neutron capture therapy of malignant melanomas using positron emission tomography and 4-borono-2-[18F]fluoro-l-phenylalanine. Melanoma Res. 2009;2:171–9.

    Article  Google Scholar 

  25. Yoshimoto M, Kurihara H, Honda N, Kawai K, Ohe K, Fujii H, et al. Predominant contribution of L-type amino acid transporter to 4-borono-2-18F-fluoro-phenylalanine uptake in human glioblastoma cells. Nucl Med Biol. 2013;40:625–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kreimann EL, Itoiz ME, Dagrosa A, Garavaglia R, Farías S, Batistoni D, et al. The hamster cheek pouch as a model of oral cancer for boron neutron capture therapy studies: selective delivery of boron by boronophenylalanine. Cancer Res. 2001;61:8775–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the entire staff of the Department of Nuclear Medicine and Tracer Kinetics and the Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, for their help with the PET examinations. This study was supported by a Grant (No. 24591758) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eku Shimosegawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimosegawa, E., Isohashi, K., Naka, S. et al. Assessment of 10B concentration in boron neutron capture therapy: potential of image-guided therapy using 18FBPA PET. Ann Nucl Med 30, 749–755 (2016). https://doi.org/10.1007/s12149-016-1121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1121-8

Keywords

Navigation