Skip to main content
Log in

Clinical feasibility of early scanning after administration of 68Ga-DOTATOC

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Positron emission tomography (PET)/computed tomography (CT) using 68Ga-labeled 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid-d-Phe1-Tyr3-octreotide (DOTATOC) is usually performed about 1-h post-injection; however, because of rapid blood clearance, the waiting time for scanning could possibly be shortened without affecting diagnostic performance. The purpose of this study was to investigate the feasibility of early scanning at 30 min post-injection.

Methods

Thirty-eight patients who underwent DOTATOC-PET/CT were analyzed. After administration of 68Ga-DOTATOC, data acquisition was performed twice, at 30-min and 60-min post-injection. The number of known or suspected pathological lesions, and quantitative values of those lesions and physiological uptake were compared. SUVmax, SUVpeak, metabolic tumor volume (MTV), and total lesion uptake (TLU) were calculated as quantitative values of the pathological lesions.

Results

A total of 125 known or suspected pathological lesions were found at both timepoints, with no differences between the two datasets. The SUVmax, SUVpeak, MTV, and TLU were highly reproducible, with Spearman’s ρ of 0.983, 0.986, 0.918, and 0.981, respectively. The average percent differences (%DIFFave) defined as the differences of the values divided by the value at 1-h post-injection were 11.1% for SUVmax, 8.5% for SUVpeak, 15.1% for MTV, and 20.6% for TLU. Physiological uptake in the two datasets was closely comparable in the pituitary gland (Spearman’s ρ = 0.954, %DIFFave = 11.0%), liver (0.989, 3.9%), spleen (0.970, 6.3%), adrenal glands (0.879, 13.0%), and pancreatic uncus (0.946, 12.7%).

Conclusion

The diagnostic performance of visual interpretation should be comparable between DOTATOC-PET/CT images obtained at 30-min and 60-min post-injection. Some differences between quantitative values may exist; however, they appear to be minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Putzer D, Kroiss A, Waitz D, Gabriel M, Traub-Weidinger T, Uprimny C, et al. Somatostatin receptor PET in neuroendocrine tumours: 68 Ga-DOTA0,Tyr3-octreotide versus 68 Ga-DOTA0-lanreotide. Eur J Nucl Med Mol Imaging. 2013;40:364–72.

    Article  CAS  PubMed  Google Scholar 

  2. Barrio M, Czernin J, Fanti S, Ambrosini V, Binse I, Du L, et al. The impact of somatostatin receptor-directed PET/CT on the management of patients with neuroendocrine tumor: a systematic review and meta-analysis. J Nucl Med. 2017;58:756–61.

    Article  PubMed  Google Scholar 

  3. Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M, et al. Procedure guidelines for PET/CT tumour imaging with 68 Ga-DOTA-conjugated peptides: 68 Ga-DOTA-TOC, 68 Ga-DOTA-NOC, 68 Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010;37:2004–10.

    Article  PubMed  Google Scholar 

  4. Bozkurt MF, Virgolini I, Balogova S, Beheshti M, Rubello D, Decristoforo C, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with (68)Ga-DOTA-conjugated somatostatin receptor targeting peptides and (18)F-DOPA. Eur J Nucl Med Mol Imaging. 2017;44:1588–601.

    Article  CAS  PubMed  Google Scholar 

  5. Velikyan I, Sundin A, Sörensen J, Lubberink M, Sandström M, Garske-Román U, et al. Quantitative and qualitative intrapatient comparison of 68 Ga-DOTATOC and 68 Ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med. 2014;55:204–10.

    Article  CAS  PubMed  Google Scholar 

  6. Nakamoto Y, Ishimori T, Sano K, Temma T, Ueda M, Saji H, et al. Clinical efficacy of dual-phase scanning using (68)Ga-DOTATOC-PET/CT in the detection of neuroendocrine tumours. Clin Radiol. 2016;71:1069.e1-5.

    Article  PubMed  Google Scholar 

  7. Dirisamer A, Halpern BS, Schima W, Heinisch M, Wolf F, Beheshti M, et al. Dual-time-point FDG-PET/CT for the detection of hepatic metastases. Mol Imaging Biol. 2008;10:335–40.

    Article  PubMed  Google Scholar 

  8. Miyake KK, Nakamoto Y, Togashi K. Dual-time-point 18F-FDG PET/CT in patients with colorectal cancer: clinical value of early delayed scanning. Ann Nucl Med. 2012;26:492–500.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (16K10346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Nakamoto.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamoto, Y., Ishimori, T., Sano, K. et al. Clinical feasibility of early scanning after administration of 68Ga-DOTATOC. Ann Nucl Med 33, 55–60 (2019). https://doi.org/10.1007/s12149-018-1304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-018-1304-6

Keywords

Navigation