Skip to main content
Log in

Enhanced Performance of Rhizopus oryzae Lipase Immobilized on Hydrophobic Carriers and Its Application in Biorefinery of Rapeseed Oil Deodorizer Distillate

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In this study, hydrophobic macroporous resin NKA was employed as matrix for immobilization of free Rhizopus oryzae lipase (ROL). The performance of the immobilized ROL was significantly enhanced. The recovery activity was up to 1,293.78 % and the specific activity increased to 152,914 U/g-protein, which was 46-fold higher than that of the free lipase. Moreover, the immobilized lipase showed higher thermostability and better pH-resistance than its free counterpart. Additionally, three different nonaqueous modification strategies (including bioimprinting, lecithin coating, and lyophilization protection) were further utilized to improve the performance of the immobilized lipase. The corresponding enhancements were 33.68 %, 31.98 %, and 99.86 %. When these modifications were combined together, the activity improved 209.51 %. In order to confirm its practical application, the modified ROL was used to biorefine rapeseed oil deodorizer distillate (RODD) for biodiesel production. The highest conversion yield reached 98.23 %, much close to that (97.46 %) of Novozym 435. The results suggest that the prepared lipase in this study is a promising biocatalyst with high stability, efficiency and operational reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DD:

Deodorizer distillate

RODD:

Rapeseed oil deodorizer distillate

FFA:

Free fatty acid

ROL:

Rhizopus oryzae lipase

Mtpa:

Million tons per annum

BSA:

Bovine serum albumin

NOV 435:

Novozym 435

FAEEs:

Fatty acid ethyl esters

References

  1. Li J, Li L, Tong J, Wang Y, Chen S (2012) Research development on lipase-catalyzed biodiesel. Energy Procedia 16, Part B: 1014–1021

    Google Scholar 

  2. Tecelão C, Guillén M, Valero F, Ferreira-Dias S (2012) Immobilized heterologous Rhizopus oryzae lipase: A feasible biocatalyst for the production of human milk fat substitutes. Biochem Eng J 67:104–110

    Article  Google Scholar 

  3. Nunes PA, Pires-Cabral P, Guillén M, Valero F, Ferreira-Dias S (2012) Batch operational stability of immobilized heterologous Rhizopus oryzae lipase during acidolysis of virgin olive oil with medium-chain fatty acids. Biochem Eng J 67:265–268

    Article  CAS  Google Scholar 

  4. Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A, Fukuda H (2006) Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J Biosci Bioeng 101:328–333

    Article  CAS  PubMed  Google Scholar 

  5. Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673

    Article  CAS  PubMed  Google Scholar 

  6. Kaieda M, Samukawa T, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Nomoto F, Ohtsuka K, Izumoto E, Fukuda H (1999) Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J Biosci Bioeng 88:627–631

    Article  CAS  PubMed  Google Scholar 

  7. Bajaj A, Lohan P, Jha PN, Mehrotra R (2010) Biodiesel production through lipase catalyzed transesterification: An overview. J Mol Catal B-Enzym 62:9–14

    Article  CAS  Google Scholar 

  8. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315

    Article  CAS  PubMed  Google Scholar 

  9. Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilized lipase: A review. Biotechnol Adv 28:628–634

    Article  CAS  PubMed  Google Scholar 

  10. Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of Biodiesel Using Immobilized Lipase—A Critical Review. Crit Rev Biotechnol 28:253–264

    Article  CAS  PubMed  Google Scholar 

  11. Bornscheuer UT, Bessler C, Srinivas R, Hari Krishna S (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez-Lorente G, Cabrera Z, Godoy C, Fernandez-Lafuente R, Palomo JM, Guisan JM (2008) Interfacially activated lipases against hydrophobic supports: effect of the support nature on the biocatalytic properties. Process Biochem 43:1061–1067

    Article  CAS  Google Scholar 

  13. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  PubMed  Google Scholar 

  14. Yan Y, Zhang X, Chen D (2013) Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids. Bioresource Technol 131:179–187

    Article  CAS  Google Scholar 

  15. Liu Y, Liu T, Wang X, Xu L, Yan Y (2011) Biodiesel synthesis catalyzed by Burkholderia cenocepacia lipase supported on macroporous resin NKA in solvent-free and isooctane systems. Energy Fuel 25:1206–1212

    Article  CAS  Google Scholar 

  16. Wu JC, Lee SS, Mahmood MMB, Chow Y, Talukder MMR, Choi WJ (2007) Enhanced activity and stability of immobilized lipases by treatment with polar solvents prior to lyophilization. J Mol Catal B-Enzym 45:108–112

    Article  CAS  Google Scholar 

  17. Okahata Y, Mori T (1997) Lipid-coated enzymes as efficient catalysts in organic media. Trends Biotechnol 15:50–54

    Article  CAS  Google Scholar 

  18. Foresti ML, Alimenti GA, Ferreira ML (2005) Interfacial activation and bioimprinting of Candida rugosa lipase immobilized on polypropylene: effect on the enzymatic activity in solvent-free ethyl oleate synthesis. Enzyme Microb Tech 36:338–349

    Article  CAS  Google Scholar 

  19. Gupta MN, Roy I (2004) Enzymes in organic media. Eur J Biochem 271:2575–2583

    Article  CAS  PubMed  Google Scholar 

  20. Yilmaz E (2002) Bio-imprinting of microbial lipase at air–water interface. World J Microb Biot 18:141–145

    Article  CAS  Google Scholar 

  21. Pagani MA, Baltanás MA (2010) Production of natural antioxidants from vegetable oil deodorizer distillates: Effect of catalytic hydrogenation. Bioresource Technol 101:1369–1376

    Article  CAS  Google Scholar 

  22. Kasim NS, Gunawan S, Ju Y (2009) Isolation and identification of steroidal hydrocarbons in soybean oil deodorizer distillate. Food Chem 117:15–19

    Article  CAS  Google Scholar 

  23. Shao P, Jiang ST, Ying YJ (2007) Optimization of molecular distillation for recovery of tocopherol from rapeseed oil deodorizer distillate using response surface and artificial neural network models. Food Bioprod Process 85:85–92

    Article  CAS  Google Scholar 

  24. Jiang ST, Shao P, Pan LJ, Zhao YY (2006) Molecular distillation for recovering tocopherol and fatty acid methyl esters from rapeseed oil deodoriser distillate. Biosyst Eng 93:383–391

    Article  Google Scholar 

  25. Wang L, Du W, Liu D, Li L, Dai N (2006) Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J Mol Catal B-Enzym 43:29–32

    Article  CAS  Google Scholar 

  26. Facioli NL, Barrera-Arellano D (2001) Optimisation of enzymatic esterification of soybean oil deodoriser distillate. J Sci Food Agr 81:1193–1198

    Article  CAS  Google Scholar 

  27. Ramamurthi S, McCurdy A (1993) Enzymatic pretreatment of deodorizer distillate for concentration of sterols and tocopherols. J Am Oil Chem Soc 70:287–295

    Article  CAS  Google Scholar 

  28. Petkar M, Lali A, Caimi P, Daminati M (2006) Immobilization of lipases for non-aqueous synthesis. J Mol Catal B-Enzym 39:83–90

    Article  CAS  Google Scholar 

  29. Liu T, Liu Y, Wang X, Li Q, Wang J, Yan Y (2011) Improving catalytic performance of Burkholderia cepacia lipase immobilized on macroporous resin NKA. J Mol Catal B-Enzym 71:45–50

    Article  CAS  Google Scholar 

  30. Salis A, Svensson I, Monduzzi M, Solinas V, Adlercreutz P (2003) The atypical lipase B from Candida antarctica is better adapted for organic media than the typical lipase from Thermomyces lanuginosa. Bba-Proteins Proteom 1646:145–151

    Article  CAS  Google Scholar 

  31. Gomes FM, Pereira EB, de Castro HF (2003) Immobilization of lipase on chitin and its use in nonconventional biocatalysis. Biomacromolecules 5:17–23

    Article  Google Scholar 

  32. Cheirsilp B, H-Kittikun A, Limkatanyu S (2008) Impact of transesterification mechanisms on the kinetic modeling of biodiesel production by immobilized lipase. Biochem Eng J 42:261–269

    Article  CAS  Google Scholar 

  33. Yu H, Wu J, Ching C (2004) Enhanced activity and enantioselectivity of Candida rugosa lipase immobilized on macroporous adsorptive resins for ibuprofen resolution. Biotechnol Lett 26:629–633

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Wu H, Ho C, Weng X (2006) Cocoa butter equivalent from enzymatic interesterification of tea seed oil and fatty acid methyl esters. Food Chem 97:661–665

    Article  CAS  Google Scholar 

  35. Bastida A, Sabuquillo P, Armisen P, Fernández-Lafuente R, Huguet J, Guisán JM (1998) A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng 58:486–493

    Article  CAS  PubMed  Google Scholar 

  36. Serdakowski AL, Dordick JS (2008) Enzyme activation for organic solvents made easy. Trends Biotechnol 26:48–54

    Article  CAS  PubMed  Google Scholar 

  37. Burke PA, Griffin RG, Klibanov AM (1992) Solid-state NMR assessment of enzyme active center structure under non-aqueous conditions. J Biol Chem 267:20057–20064

    CAS  PubMed  Google Scholar 

  38. Triantafyllou AÖ, Wehtje E, Adlercreutz P, Mattiasson B (1995) Effects of sorbitol addition on the action of free and immobilized hydrolytic enzymes in organic media. Biotechnol Bioeng 45:406–414

    Article  CAS  PubMed  Google Scholar 

  39. Khmelnitsky YL, Welch SH, Clark DS, Dordick JS (1994) Salts dramatically enhance activity of enzymes suspended in organic solvents. J Am Chem Soc 116:2647–2648

    Article  CAS  Google Scholar 

  40. Bedell BA, Mozhaev VV, Clark DS, Dordick JS (1998) Testing for diffusion limitations in salt-activated enzyme catalysts operating in organic solvents. Biotechnol Bioeng 58:654–657

    Article  CAS  PubMed  Google Scholar 

  41. Fishman A, Cogan U (2003) Bio-imprinting of lipases with fatty acids. J Mol Catal B-Enzym 22:193–202

    Article  CAS  Google Scholar 

  42. Yu D, Tian L, Wu H, Wang S, Wang Y, Ma DFang X (2010) Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochem 45:519–525

    Article  CAS  Google Scholar 

  43. Modi MK, Reddy JRC, Rao BVSKPrasad RBN (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresource Technol 98:1260–1264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Natural Science Foundation of P. R. China (NSFC; Nos. 31070089, 31170078, and J1103514), the National High Technology Research and Development Program of P. R. China (863 Program; Nos. 2011AA02A204, 2013AA065805), and the Innovation Foundation of Shenzhen Government (JCYJ20120831111657864). Many thanks are indebted to Ms Chen Hong, from the Centre of Analysis and Test, Huazhong University of Science and Technology for biodiesel analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, F., Li, G., Zhang, H. et al. Enhanced Performance of Rhizopus oryzae Lipase Immobilized on Hydrophobic Carriers and Its Application in Biorefinery of Rapeseed Oil Deodorizer Distillate. Bioenerg. Res. 7, 935–945 (2014). https://doi.org/10.1007/s12155-014-9415-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9415-y

Keywords

Navigation