Skip to main content
Log in

Senna reticulata: a Viable Option for Bioenergy Production in the Amazonian Region

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Senna reticulata is an Amazonian tree that quickly accumulates high biomass. It grows widely in the north of Brazil occupying degraded regions and is popularly known as “matapasto” (pasture-killer) due to its aggressive colonization strategy. When its aerial parts are harvested, S. reticulata recolonizes the pasture quickly recovering biomass production. In this work, we examined the potential of S. reticulata for bioenergy production in the Amazon region and the effect of a CO2 enriched atmosphere on its biomass composition. Nearly 50% of the biomass of the aerial parts is non-structural carbohydrates (NSC). Concerning structural carbohydrates, pectins (25% and 23%), hemicelluloses (11% and 16%), and cellulose (4% and 14%) contents were very similar in leaves and stems, respectively. Lignin varied considerably among organs, being 35% in roots, 7% in stems, and 10% in leaves. Although elevated CO2 did not change significantly cell wall pools, lignin content was reduced in leaves and roots. Furthermore, starch increased 31% in leaves under elevated CO2, which improved saccharification by 47%. We conclude that Senna reticulata is a suitable species for use as a bioenergy feedstock in the tropics and specifically for remote communities in the Amazonian region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. IPCC (2014) Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva

  2. Karp A, Richter GM (2011) Meeting the challenge of food and energy security. J Exp Bot 62:3263–3271. https://doi.org/10.1093/jxb/err099

    Article  CAS  PubMed  Google Scholar 

  3. de Souza AP, Grandis A, Leite DCC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. BioEnergy Res 7:24–35. https://doi.org/10.1007/s12155-013-9366-8

    Article  CAS  Google Scholar 

  4. Richard TL (2010) Challenges in scaling up biofuels infrastructure. Science 329:793–796. https://doi.org/10.1126/science.1189139

    Article  CAS  PubMed  Google Scholar 

  5. de Oliveira Bordonal R, Carvalho JLN, Lal R et al (2018) Sustainability of sugarcane production in Brazil. A review. Agron Sustain Dev 38:13. https://doi.org/10.1007/s13593-018-0490-x

    Article  Google Scholar 

  6. Milner S, Holland RA, Lovett A, Sunnenberg G, Hastings A, Smith P, Wang S, Taylor G (2016) Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB. GCB Bioenergy 8:317–333. https://doi.org/10.1111/gcbb.12263

    Article  PubMed  Google Scholar 

  7. Pandey A, Larroche C, Dussap C-G et al (2019) Biomass, biofuels, biochemicals, Second edn. Elsevier

  8. Liu C-G, Xiao Y, Xia X-X, Zhao XQ, Peng L, Srinophakun P, Bai FW (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504. https://doi.org/10.1016/j.biotechadv.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  9. Ruane J, Sonnino A, Agostini A (2010) Bioenergy and the potential contribution of agricultural biotechnologies in developing countries. Biomass Bioenergy 34:1427–1439. https://doi.org/10.1016/j.biombioe.2010.04.011

    Article  Google Scholar 

  10. Duarte AR, Bezerra UH, de Lima Tostes ME, Duarte AM, da Rocha Filho GN (2010) A proposal of electrical power supply to Brazilian Amazon remote communities. Biomass Bioenergy 34:1314–1320. https://doi.org/10.1016/j.biombioe.2010.04.004

    Article  Google Scholar 

  11. Cardoso D, Särkinen T, Alexander S, Amorim AM, Bittrich V, Celis M, Daly DC, Fiaschi P, Funk VA, Giacomin LL, Goldenberg R, Heiden G, Iganci J, Kelloff CL, Knapp S, Cavalcante de Lima H, Machado AFP, dos Santos RM, Mello-Silva R, Michelangeli FA, Mitchell J, Moonlight P, de Moraes PLR, Mori SA, Nunes TS, Pennington TD, Pirani JR, Prance GT, de Queiroz LP, Rapini A, Riina R, Rincon CAV, Roque N, Shimizu G, Sobral M, Stehmann JR, Stevens WD, Taylor CM, Trovó M, van den Berg C, van der Werff H, Viana PL, Zartman CE, Forzza RC (2017) Amazon plant diversity revealed by a taxonomically verified species list. Proc Natl Acad Sci 114:10695–10700. https://doi.org/10.1073/pnas.1706756114

    Article  CAS  PubMed  Google Scholar 

  12. Parolin P (2005) Senna reticulata (Willd.) H. S. Irwin & Barneby (Fabaceae) as “pasture killer” (“Matapasto”) pioneer tree in amazonian floodplains. Ecol Apl 4:41–46

    Article  Google Scholar 

  13. Arenque BC, Grandis A, Pocius O, de Souza AP, Buckeridge MS (2014) Responses of Senna reticulata, a legume tree from the Amazonian floodplains, to elevated atmospheric CO2 concentration and waterlogging. Trees 28:1021–1034. https://doi.org/10.1007/s00468-014-1015-0

    Article  CAS  Google Scholar 

  14. Parolin P (1999) Growth strategies of Senna reticulata and Cecropia latiloba, two pioneer tree species of Central Amazonian floodplains? Bielefelder Ökologische Beiträge:272–277

  15. Parolin P, Oliveira AC, Piedade MTF, Wittmann F, Junk WJ (2002) Pioneer trees in Amazonian floodplains: three key species form monospecific stands in different habitats. Folia Geobot 37:225–238. https://doi.org/10.1007/BF02804233

    Article  Google Scholar 

  16. Parolin P (2002) Seasonal changes of specific leaf mass and leaf size in trees of Amazonian floodplain. Phyton (B Aires) 42:169–185

    Google Scholar 

  17. Parolin P (2002) Submergence tolerance vs. escape from submergence: two strategies of seedling establishment in Amazonian floodplains. Environ Exp Bot 48:177–186. https://doi.org/10.1016/S0098-8472(02)00036-9

    Article  Google Scholar 

  18. Carpita NC, Kanabus J (1987) Extraction of starch by dimethyl sulfoxide and quantitation by enzymatic assay. Anal Biochem 161:132–139. https://doi.org/10.1016/0003-2697(87)90662-2

    Article  CAS  PubMed  Google Scholar 

  19. Gorshkova TA, Wyatt SE, Salnikov VV, Gibeaut DM, Ibragimov MR, Lozovaya VV, Carpita NC (1996) Cell-wall polysaccharides of developing flax plants. Plant Physiol 110:721–729. https://doi.org/10.1104/pp.110.3.721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carpita NC (1984) Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali. Phytochemistry 23:1089–1093. https://doi.org/10.1016/S0031-9422(00)82615-1

    Article  CAS  Google Scholar 

  21. Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32:420–424. https://doi.org/10.1016/S0003-2697(69)80009-6

    Article  CAS  PubMed  Google Scholar 

  22. Saeman JF, Bubl JL, Harris EE (1945) Quantitative saccharification of wood and xellulose. Ind Eng Chem Anal Ed 17:35–37. https://doi.org/10.1021/i560137a008

    Article  CAS  Google Scholar 

  23. Filisetti-Cozzi TMCC, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162. https://doi.org/10.1016/0003-2697(91)90372-Z

    Article  CAS  PubMed  Google Scholar 

  24. dos Santos WD, Ferrarese MLL, Nakamura CV et al (2008) Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. J Chem Ecol 34:1230. https://doi.org/10.1007/s10886-008-9522-3

    Article  CAS  PubMed  Google Scholar 

  25. Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 91:889–897. https://doi.org/10.1104/pp.91.3.889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gomez LD, Whitehead C, Barakate A, Halpin C, McQueen-Mason SJ (2010) Automated saccharification assay for determination of digestibility in plant materials. Biotechnol Biofuels 3:23. https://doi.org/10.1186/1754-6834-3-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127:551–565. https://doi.org/10.1104/pp.010146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cosgrove DJ (1997) Assembly and enlargements of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201. https://doi.org/10.1146/annurev.cellbio.13.1.171

    Article  CAS  PubMed  Google Scholar 

  29. Albersheim P, Darvill A, Roberts K, Sederoff RSA (2011) Plant cell walls. From chemistry to biology. Ann Bot 108:viii–ix. https://doi.org/10.1093/aob/mcr128

    Article  Google Scholar 

  30. DeMartini JD, Pattathil S, Miller JS et al (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ Sci 6:898–909. https://doi.org/10.1039/C3EE23801F

    Article  CAS  Google Scholar 

  31. Salazar MM, Grandis A, Pattathil S, Neto JL, Camargo ELO, Alves A, Rodrigues JC, Squina F, Cairo JPF, Buckeridge MS, Hahn MG, Pereira GAG (2016) Eucalyptus cell wall architecture: clues for lignocellulosic biomass deconstruction. BioEnergy Res 9:969–979. https://doi.org/10.1007/s12155-016-9770-y

    Article  CAS  Google Scholar 

  32. Selvendran RR (1985) Developments in the chemistry and biochemistry of pectic and hemicellulosic polymers. J Cell Sci 1985:51–88. https://doi.org/10.1242/jcs.1985.Supplement_2.4

    Article  Google Scholar 

  33. Seymour GB, Colquhoun IJ, Dupont MS, Parsley KR, R. Selvendran R (1990) Composition and structural features of cell wall polysaccharides from tomato fruits. Phytochemistry 29:725–731. https://doi.org/10.1016/0031-9422(90)80008-5

    Article  CAS  Google Scholar 

  34. Pattathil S, Avci U, Miller JS, Hahn MG (2012) Immunological approaches to plant cell wall and biomass characterization: glycome profiling. In: Himmel M (ed) Biomass conversion. Methods in Molecular Biology. Humana Press, Totowa, pp 61–72

    Chapter  Google Scholar 

  35. Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779. https://doi.org/10.1146/annurev-arplant-042811-105534

    Article  CAS  PubMed  Google Scholar 

  36. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289. https://doi.org/10.1146/annurev-arplant-042809-112315

    Article  CAS  PubMed  Google Scholar 

  37. De Simone O, Haase K, Müller E et al (2003) Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiol 132:206–217. https://doi.org/10.1104/pp.102.014902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M (2012) Mechanisms for coping with submergence and waterlogging in rice. Rice 5:2. https://doi.org/10.1186/1939-8433-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moog PR, Janiesch P (1990) Root growth and morphology of carex species as influenced by oxygen deficiency. Funct Ecol 4:201–208. https://doi.org/10.2307/2389339

    Article  Google Scholar 

  40. Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J Exp Bot 49:1431–1436. https://doi.org/10.1093/jxb/49.325.1431

    Article  CAS  Google Scholar 

  41. Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. In: Rozema J, Lambers H, Van de Geijn S, Cambridge M (eds) CO2 and biosphere. Advances in vegetation science. Springer, Dordrecht, pp 77–98

    Chapter  Google Scholar 

  42. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

    Article  CAS  PubMed  Google Scholar 

  43. De Souza AP, Gaspar M, Da Silva EA et al (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127. https://doi.org/10.1111/j.1365-3040.2008.01822.x

    Article  CAS  PubMed  Google Scholar 

  44. Dusenge ME, Duarte AG, Way DA (2019) Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol 221:32–49. https://doi.org/10.1111/nph.15283

    Article  CAS  PubMed  Google Scholar 

  45. Poorter H, Van Berkel Y, Baxter R et al (1997) The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ 20:472–482. https://doi.org/10.1046/j.1365-3040.1997.d01-84.x

    Article  CAS  Google Scholar 

  46. Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114. https://doi.org/10.1016/j.pbi.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  47. Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436. https://doi.org/10.1046/j.1469-8137.1998.00221.x

    Article  Google Scholar 

  48. Ezquer I, Salameh I, Colombo L, Kalaitzis P (2020) Plant cell walls tackling climate change: insights into plant cell wall remodeling, its regulation, and biotechnological strategies to improve crop adaptations and photosynthesis in response to global warming. Plants 9:1–27. https://doi.org/10.3390/plants9020212

    Article  CAS  Google Scholar 

  49. Kinsman EA, Lewis C, Davies MS et al (1997) Elevated CO2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata. Plant Cell Environ 20:1309–1316. https://doi.org/10.1046/j.1365-3040.1997.d01-21.x

    Article  Google Scholar 

  50. Armstrong W (1980) Aeration in higher plants. Adv Bot Res 7:225–332. https://doi.org/10.1016/S0065-2296(08)60089-0

    Article  Google Scholar 

  51. Colmer TD (2002) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot 91:301–309. https://doi.org/10.1093/aob/mcf114

    Article  CAS  Google Scholar 

  52. Gibeaut DM, Cramer GR, Seemann JR (2001) Growth, cell walls, and UDP-Glc dehydrogenase activity of Arabidopsis thaliana grown in elevated carbon dioxide. J Plant Physiol 158:569–576. https://doi.org/10.1078/0176-1617-00229

    Article  CAS  Google Scholar 

  53. Ferris R, Taylor G (1994) Increased root growth in elevated CO2: a biophysical analysis of root cell elongation. J Exp Bot 45:1603–1612. https://doi.org/10.1093/jxb/45.11.1603

    Article  CAS  Google Scholar 

  54. Ranasinghe S, Taylor G (1996) Mechanism for increased leaf growth in elevated CO2. J Exp Bot 47:349–358. https://doi.org/10.1093/jxb/47.3.349

    Article  CAS  Google Scholar 

  55. Taylor G, Ranasinghe S, Bosac C, Gardner SDL, Ferris R (1994) Elevated CO2 and plant growth: cellular mechanisms and responses of whole plants. J Exp Bot 45:1761–1774. https://doi.org/10.1093/jxb/45.Special_Issue.1761

    Article  CAS  Google Scholar 

  56. Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182. https://doi.org/10.1146/annurev.arplant.043008.092125

    Article  CAS  PubMed  Google Scholar 

  57. Röder M, Thornley P (2018) Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK. Waste Manag 74:241–252. https://doi.org/10.1016/j.wasman.2017.11.042

    Article  CAS  PubMed  Google Scholar 

  58. Ulloa Ulloa C, Acevedo-Rodríguez P, Beck S, Belgrano MJ, Bernal R, Berry PE, Brako L, Celis M, Davidse G, Forzza RC, Gradstein SR, Hokche O, León B, León-Yánez S, Magill RE, Neill DA, Nee M, Raven PH, Stimmel H, Strong MT, Villaseñor JL, Zarucchi JL, Zuloaga FO, Jørgensen PM (2017) An integrated assessment of the vascular plant species of the Americas. Science 358:1614–1617. https://doi.org/10.1126/science.aao0398

    Article  CAS  PubMed  Google Scholar 

  59. Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32. https://doi.org/10.1111/j.1469-8137.2008.02432.x

    Article  PubMed  Google Scholar 

  60. Yuan JS, Tiller KH, Al-Ahmad H et al (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429. https://doi.org/10.1016/j.tplants.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  61. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792. https://doi.org/10.1126/science.1189268

    Article  CAS  PubMed  Google Scholar 

  62. Frederick WJ, Lien SJ, Courchene CE et al (2008) Production of ethanol from carbohydrates from loblolly pine: a technical and economic assessment. Bioresour Technol 99:5051–5057. https://doi.org/10.1016/j.biortech.2007.08.086

    Article  CAS  PubMed  Google Scholar 

  63. Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712. https://doi.org/10.1016/j.biortech.2010.06.093

    Article  CAS  PubMed  Google Scholar 

  64. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450. https://doi.org/10.1126/science.1111166

    Article  CAS  PubMed  Google Scholar 

  65. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  CAS  PubMed  Google Scholar 

  66. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285. https://doi.org/10.1016/j.pbi.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  67. Poovaiah CR, Nageswara-Rao M, Soneji JR, Baxter HL, Stewart CN Jr (2014) Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant Biotechnol J 12:1163–1173. https://doi.org/10.1111/pbi.12225

    Article  CAS  PubMed  Google Scholar 

  68. Loqué D, Scheller HV, Pauly M (2015) Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol 25:151–161. https://doi.org/10.1016/j.pbi.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  69. Bassam NE (1998) Energy plant species: their use and impact on environment and development. James & James, London

    Google Scholar 

  70. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924–7926. https://doi.org/10.1002/anie.200801594

    Article  CAS  Google Scholar 

  71. Deckmyn G, Laureysens I, Garcia J, Muys B, Ceulemans R (2004) Poplar growth and yield in short rotation coppice: model simulations using the process model SECRETS. Biomass Bioenergy 26:221–227. https://doi.org/10.1016/S0961-9534(03)00121-1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Maria Tereza Fernandes Piedade (INPA) for all the support with seed collection and Eglee Igarashi (LAFIECO) for HPLC analyses.

Funding

This work was supported by the National Institute of Science and Technology of Bioethanol (INCT-Bioethanol) (FAPESP 2008/57908-6 and 2014/50884-5; National Council for Scientific and Technological Development CNPq 574002/2008-1 and 465319/2014-9); the Ministry of Science and Technology of Brazil, Eletronorte (Pará, Brazil); and Centro de Processos Biológicos e Industriais para Biocombustíveis-CeProBIO (FAPESP 2009/52840-7 and CNPq 490022/2009-0). AG and BCAM are thankful to CNPq and MCMM thanks FAPESP (18/03764-5) for their fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos S. Buckeridge.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 50 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grandis, A., Arenque-Musa, B.C., Martins, M.C.M. et al. Senna reticulata: a Viable Option for Bioenergy Production in the Amazonian Region. Bioenerg. Res. 14, 91–105 (2021). https://doi.org/10.1007/s12155-020-10176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10176-x

Keywords

Navigation