Skip to main content

Advertisement

Log in

MicroRNA-192 regulates cell proliferation and cell cycle transition in acute myeloid leukemia via interaction with CCNT2

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs approximately 18–22 nucleotides in length, which play an important role in malignant transformation. The roles of miR-192 as an oncogene or tumor suppressor in solid tumors have been previously reported. However, little is known about the role of miR-192 in human acute myeloid leukemia. The results of the present study indicate that miR-192 is significantly downregulated in specimens from acute myeloid leukemia patients. Functional assays demonstrated that overexpression of miR-192 in NB4 and HL-60 cells significantly inhibited cell proliferation compared with that in control cells, and induced G0/G1 cell cycle arrest, cell differentiation, and apoptosis in vitro. Dual-luciferase reporter gene assays showed that miR-192 significantly suppressed the activity of a reporter gene containing the wild type 3′-UTR of CCNT2, but it did not suppress the activity of a reporter gene containing mutated 3′-UTR of CCNT2. QRT-PCR and Western blot assays showed that miR-192 significantly downregulated the expression of CCNT2 in human leukemia cells. Exogenous expression of CCNT2 attenuated the cell cycle arrest induced by miR-192 in NB4 and HL-60 cells. Collectively, miR-192 inhibits cell proliferation and induces G0/G1 cell cycle arrest in AML by regulating the expression of CCNT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. New Engl j med. 1999;341:1051–62.

    Article  CAS  PubMed  Google Scholar 

  2. Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109:431–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kern W, Haferlach C, Haferlach T, Schnittger S. Monitoring of minimal residual disease in acute myeloid leukemia. Cancer. 2008;112:4–16.

    Article  CAS  PubMed  Google Scholar 

  4. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92:2322–33.

    CAS  PubMed  Google Scholar 

  5. Estey E, Dohner H. Acute myeloid leukaemia. Lancet. 2006;368:1894–907.

    Article  PubMed  Google Scholar 

  6. Singh S, Chitkara D, Kumar V, Behrman SW, Mahato RI. miRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Lett. 2013;334:211–20.

    Article  CAS  PubMed  Google Scholar 

  7. Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell. 2013;153:516–9.

    Article  CAS  PubMed  Google Scholar 

  8. Chen DL, Wang DS, Wu WJ, Zeng ZL, Luo HY, Qiu MZ, et al. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis. 2013;34:803–11.

    Article  CAS  PubMed  Google Scholar 

  9. Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M, et al. MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene. 2014;33:5332–40.

    Article  CAS  PubMed  Google Scholar 

  10. Jin Y, Lu J, Wen J, Shen Y, Wen X. Regulation of growth of human bladder cancer by miR-192. Tumour Biol. 2015;36:3791–7.

    Article  CAS  PubMed  Google Scholar 

  11. Li S, Li F, Niu R, Zhang H, Cui A, An W, et al. Mir-192 suppresses apoptosis and promotes proliferation in esophageal aquamous cell caicinoma by targeting Bim. Int J Clinic Exp Pathol. 2015;8:8048–56.

    Google Scholar 

  12. Zhao C, Zhang J, Zhang S, Yu D, Chen Y, Liu Q, et al. Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol Rep. 2013;30:276–84.

    CAS  PubMed  Google Scholar 

  13. Chen Q, Ge X, Zhang Y, Xia H, Yuan D, Tang Q, et al. Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol Rep. 2014;31:1863–70.

    CAS  PubMed  Google Scholar 

  14. Feng S, Cong S, Zhang X, Bao X, Wang W, Li H, et al. MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells. Nucleic Acids Res. 2011;39:6669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruijtenberg S, van den Heuvel S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle. 2016;15:196–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peng J, Zhu Y, Milton JT, Price DH. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 1998;12:755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, et al. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J. 2008;27:1907–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001;414:322–5.

    Article  CAS  PubMed  Google Scholar 

  19. Cottone G, Baldi A, Palescandolo E, Manente L, Penta R, Paggi MG, et al. Pkn is a novel partner of cyclin T2a in muscle differentiation. J Cell Physiol. 2006;207:232–7.

    Article  CAS  PubMed  Google Scholar 

  20. Simone C, Bagella L, Bellan C, Giordano A. Physical interaction between pRb and cdk9/cyclinT2 complex. Oncogene. 2002;21:4158–65.

    Article  CAS  PubMed  Google Scholar 

  21. Dick FR, Armitage JO, Burns CP. Diagnostic concurrence in the subclassification of adult acute leukemia using French-American-British criteria. Cancer. 1982;49:916–20.

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Liao W, Peng H, Luo X, Luo Z, Jiang H, et al. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol. 2016;142:77–87.

    Article  CAS  PubMed  Google Scholar 

  23. Butrym A, Rybka J, Baczynska D, Tukiendorf A, Kuliczkowski K, Mazur G. Low expression of microRNA-204 (miR-204) is associated with poor clinical outcome of acute myeloid leukemia (AML) patients. J Exp Clinic Cancer Research. 2015;34:68.

    Article  Google Scholar 

  24. Jin J, Wang Y, Xu Y, Zhou X, Liu Y, Li X, et al. MicroRNA-144 regulates cancer cell proliferation and cell-cycle transition in acute lymphoblastic leukemia through the interaction of FMN2. J Gene Med 2016. doi:10.1002/jgm.2898

    Google Scholar 

  25. Shen JZ, Zhang YY, Fu HY, Wu DS, Zhou HR. Overexpression of microRNA-143 inhibits growth and induces apoptosis in human leukemia cells. Oncol Rep. 2014;31:2035–42.

    CAS  PubMed  Google Scholar 

  26. Lu F, Zhang J, Ji M, Li P, Du Y, Wang H, et al. miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1. Int J Oncol. 2014;45:383–92.

    CAS  PubMed  Google Scholar 

  27. Shibayama Y, Kondo T, Ohya H, Fujisawa S, Teshima T, Iseki K. Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep. 2015;33:2176–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rommer A, Steinleitner K, Hackl H, Schneckenleithner C, Engelmann M, Scheideler M, et al. Overexpression of primary microRNA 221/222 in acute myeloid leukemia. BMC Cancer. 2013;13:364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feinberg-Gorenshtein G, Guedj A, Shichrur K, Jeison M, Luria D, Kodman Y, et al. MiR-192 directly binds and regulates Dicer1 expression in neuroblastoma. PLoS One. 2013;8:e78713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jenkins RH, Davies LC, Taylor PR, Akiyama H, Cumbes B, Beltrami C, et al. miR-192 induces G2/M growth arrest in aristolochic acid nephropathy. Am J Pathol. 2014;184:996–1009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the local doctors and the patients who participated in our study. The project was supported by the Hubei Provincial Natural Science Foundation of China (No. 2011CDD193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-hao Fang.

Ethics declarations

Conflicts of interest

The authors have declared no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 13 kb)

Supplementary material 2 (XLSX 8 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, S., Li, Rc., Lu, J. et al. MicroRNA-192 regulates cell proliferation and cell cycle transition in acute myeloid leukemia via interaction with CCNT2. Int J Hematol 106, 258–265 (2017). https://doi.org/10.1007/s12185-017-2232-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-017-2232-2

Keywords

Navigation