Skip to main content
Log in

Realistic Temporal Variations of Shear Stress Modulate MMP-2 and MCP-1 Expression in Arteriovenous Vascular Access

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Venous neointimal hyperplasia (VNH) lesions are prone to localized development within the vascular access junction (VAJ) and efferent vein of arteriovenous (AV) fistulae and grafts. The creation of VAJ dramatically alters the local venous hemodynamics with high pulsatile flow velocities enter the vein resulting in blood-flow separation, recirculation and flow reversal. This study conducted a computational hemodynamic investigation of an idealized AV graft and realistic AV fistula which demonstrated a complex hemodynamic environment within the VAJ, producing elevated wall shear stress (WSS) magnitudes and significant spatial and temporal WSS gradients in the VAJ. These hemodynamic patterns and non-physiological WSSs are postulated to initiate VNH development at the transcriptional level. Human umbilical vein endothelial cells (HUVEC) were exposed to elevated temporal WSS waveforms obtained from the aforementioned computational analysis, using a cone-and-plate bioreactor. Using real-time RT-PCR, early induction of MMP-2 and delayed transcriptional upregulation of MCP-1 was observed following EC exposure to VAJ high wall shear forces. These results indicate that MMP-2 and MCP-1 may be induced by high WSS present in the VAJ, suggesting a link between elevated WSS magnitudes and temporal gradients, extracellular matrix decomposition, smooth muscle cell migration and proliferation, and the subsequent VNH development in AV VAJs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Agarwal, A., and M. S. Segal. Intimal exuberance: veins in jeopardy. Am. Soc. Invest. Pathol. 162:1759–1761, 2003.

    Google Scholar 

  2. Albers, F. J. Causes of hemodialysis access failure. Adv. Ren. Replace. Ther. 1:107–118, 1994.

    Google Scholar 

  3. Bao, X., C. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: Role of NO, NFκB, and egr-1. Arterioscler. Thromb. Vasc. Biol. 19:996–1003, 1999.

    Google Scholar 

  4. Bassiouny, H. S., R. H. Song, X. F. Hong, A. Singh, H. Kocharyan, and S. Glagov. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 98:157–163, 1998.

    Google Scholar 

  5. Bendeck, M. P., C. Irvin, and M. A. Reidy. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ. Res. 78:38–43, 1996.

    Google Scholar 

  6. Birkedal-Hansen, H., W. G. I. Moore, M. K. Bodden, L. J. Windsor, B. Birkedal-Hansen, A. DeCarlo, and J. A. Engler. Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 4(2):197–250, 1993.

    Google Scholar 

  7. Bustin, S. A., V. Benes, T. Nolan, and M. W. Pfaffl. Quantitative real-time RT-PCR—a perspective. J. Mol. Endocrinol. 34:597–601, 2005.

    Article  Google Scholar 

  8. Charo, I. F., and M. B. Taubman. Chemokines in the pathogenesis of vascular disease. Circ. Res. 95:858–866, 2004.

    Article  Google Scholar 

  9. Chen, K.-D. Mechano transduction in response to shear stress. Roles of receptor tyrosine kinases, intigrins, and Shc. J. Biol. Chem. 274:18393–18400, 1999.

    Article  Google Scholar 

  10. Chervu, A., and W. S. Moore. An overview of intimal hyperplasia. Surg. Gynecol. Obstet. 170:433–447, 1990.

    Google Scholar 

  11. Cho, Y. I., and K. R. Kensey. Effect of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28:241–262, 1991.

    Google Scholar 

  12. Coats, Jr., W. D., P. Whittaker, D. T. Cheung, J. W. Currier, B. Han, and D. P. Faxon. Collagen content is significantly lower in restenotic versus nonrestenotic vessels after balloon angioplasty in the atherosclerotic rabbit model. Circ. Res. 95:1293–1300, 1997.

    Google Scholar 

  13. Cole, J. S., J. K. Watterson, and M. J. G. O’Reilly. Numerical Investigation of the haemodynamics at a patched arterial bypass anastomosis. Med. Eng. Phys. 24:393–401, 2002.

    Google Scholar 

  14. Cucina, A., V. Borrelli, B. Randone, P. Colucciaa, P. Sapienza, and A. Cavallaro. Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells. J. Surg. Res. 109:16–23, 2003.

    Article  Google Scholar 

  15. Dewey, Jr., C. F. Effects of fluid flow on living vascular cells. J. Biomech. Eng. 106:31–35, 1984.

    Article  Google Scholar 

  16. Dollery, C. M., J. R. McEwan, and A. M. Henney. Matrix metalloproteinases and cardiovascular disease. Circ. Res. 77:863–868, 1995.

    Google Scholar 

  17. Doyle, B. J., L. G. Morris, A. Callanan, P. Kelly, D. A. Vorp, and T. M. McGloughlin. 3D reconstruction and manufacture of real abdominal aortic aneurysms: from CT scan to silicone model. J. Biomech. Eng. 130(3):034501, 2008.

    Google Scholar 

  18. Egashira, K., Q. Zhao, C. Kataoka, K. Ohtani, M. Usui, I. F. Charo, K. Nishida, S. Inoue, M. Katoh, T. Ichiki, and A. Takeshita. Importance of monocyte chemoattractant protein-1 pathway in neointimal hyperplasia after periarterial injury in mice and monkeys. Circ. Res. 90:1167–1172, 2002.

    Article  Google Scholar 

  19. Ene-Iordache, B., and L. Mosconi. Computational fluid dynamics of a vascular access case for hemodialysis. J. Biomech. Eng. 123:284–292, 2001.

    Article  Google Scholar 

  20. Fillinger, M. F., E. R. Reinitz, R. A. Schwartz, D. E. Resetarits, A. M. Paskaniak, and C. E. Bredenberg. Beneficial effects of banding on venus intimal–medial hyperplasia in arteriovenous looped grafts. Am. J. Surg. 158:87–94, 1989.

    Article  Google Scholar 

  21. Fillinger, M. F., E. R. Reinitz, R. A. Schwartz, D. E. Resetarits, A. M. Paskaniak, D. Bruch, and C. E. Bredenberg. Graft geometry and venous intimal–medial hyperplasia in arteriovenous loop grafts. J. Vasc. Surg. 11:556–566, 1990.

    Article  Google Scholar 

  22. Freeman, W. M., S. J. Walker, and K. E. Vrana. Quantitative RT-PCR: pitfalls and potential. BioTechniques 26:112–125, 1999.

    Google Scholar 

  23. Galis, Z. S., and J. J. Khatri. Matrix metalloproteinase’s in vascular remodeling and atherogenesis. Circ. Res. 90:251–262, 2002.

    Google Scholar 

  24. Haraguchi, H., and S. Teraoka. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. Jpn. Soc. Artif. Organs 6:227–235, 2003.

    Article  Google Scholar 

  25. Hofstra, L., D. C. J. J. Bergmans, K. M. L. Leuissen, A. P. G. Hoeks, P. J. E. H. M. Kitslaar, M. J. A. P. Daemen, and J. H. M. Tordoir. Anastomic intimal hyperplasia in prosthetic arteriovenous fistulas for hemodialysis is associated with initial high flow velocity and not with mismatch in elastic properties. J. Am. Soc. Nephrol. 6:1625–1633, 1995.

    Google Scholar 

  26. Jalali, S., Y.-S. Li, M. Sotoudeh, S. Yuan, S. Li, S. Chien, and J. Y. Shyy. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18:227–234, 1998.

    Google Scholar 

  27. Johnson, T. L. Endothelial cell function using a tissue engineered blood vessel model: a case study of cell–cell communication, unpublished thesis (Ph.D.), Georgia Institute of Technology, 2006.

  28. Kanterman, R. Y., T. M. Vesely, T. K. Pilgram, B. W. Guy, D. W. Windus, and D. Picus. Dialysis access grafts: anatomic location of venous stenosis and results of angioplasty. Radiology 195:135–139, 1995.

    Google Scholar 

  29. Kim, W. J. H., I. Chereshnev, M. Gazdoiu, J. T. Fallon, B. J. Rollins, and M. B. Taubman. MCP-1 deficiency is associated with reduced intimal hyperplasia after arterial injury. Biochem. Biophys. Res. Commun. 310:936–942, 2003.

    Article  Google Scholar 

  30. Lee, S.-W., P. F. Fischer, F. Loth, T. J. Royston, J. K. Grogan, and H. S. Bassiouny. Flow-induced vein-wall vibration in an arteriovenous graft. J. Fluids Struct. 20:837–852, 2005.

    Article  Google Scholar 

  31. Longest, P. W., and C. Kleinstreuer. Computational haemodynamics analysis and comparison study of arterio–venous grafts. J. Med. Eng. Technol. 24(3):102–110, 2000.

    Google Scholar 

  32. Loth, F., P. F. Fischer, N. Arslan, C. D. Bertram, S. E. Lee, T. J. Royston, W. E. Shaalan, and H. S. Bassiouny. Transitional flow at the venous anastomosis of an arteriovenous graft: potential activation of the ERK1/2 mechanotransduction pathway. J. Biomech. Eng. 125:49–61, 2003.

    Article  Google Scholar 

  33. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282:2035–2042, 1999.

    Article  Google Scholar 

  34. Mavromatis, K., T. Fukai, M. Tate, N. Chesler, D. N. Ku, and Z. S. Galis. Early effects of arterial hemodynamic conditions on human saphenous veins perfused ex vivo. Arterioscler. Thromb. Vasc. Biol. 20:1889–1895, 2000.

    Google Scholar 

  35. Misra, S., A. A. Fu, A. Puggioni, K. M. Karimi, N. Mandrekar, F. Glockner, L. A. Juncos, B. Anwer, A. M. McGuire, and D. Mukhopadhyay. Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9 and TIMP-1 in venous stenosis of haemodialysis grafts. Am. J. Physiol. Heart Circ. Physiol. 294:H2219–H2230, 2008.

    Article  Google Scholar 

  36. Morris, L., P. Delassus, A. Callanan, M. Walsh, F. Wallis, P. Grace, and T. McGloughlin. 3-D numerical simulaton of blood flow through models of the human aorta. J. Biomech. Eng. 127(5):769–775, 2005.

    Google Scholar 

  37. Nagase, H., and J. F. Woessner. Matrix metalloproteinases. J. Biol. Chem. 274(31):21491–21494, 1999.

    Google Scholar 

  38. Nath, K. A., S. K. R. Kanakiriya, J. P. Grande, A. J. Croatt, and Z. S. Katusic. Increased venous proinflammatory gene expression and intimal hyperplasia in an aorto-caval fistula model in the rat. Am. J. Pathol. 162:2079–2090, 2003.

    Google Scholar 

  39. Nerem, R., R. W. Alexander, D. C. chapel, R. M. Medford, S. E. Varner, and R. Taylor. ‘The study of the influence of flow on vascular endothelial biology’. Am. J. Med. Sci. 316(3):169–175, 1998.

    Article  Google Scholar 

  40. O’Brien, T., M. Walsh, and T. McGloughlin. On reducing hemodynamics in the femoral artery end-to-side anastomosis: the influence of mechanical factors. Ann. Biomed. Eng. 33:310–322, 2005.

    Google Scholar 

  41. O’Keeffe, L. M., G. Miur, A. V. Piterine, and T. McGloughlin. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses. J. Biomech. Eng. 131(8):081003, 2009.

    Google Scholar 

  42. Palumbo, R., C. Gaetano, G. Melillo, E. Toschi, A. Remuzzi, and M. C. Capogrossi. Shear stress downregulation of platelet-derived growth factor receptor-β and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circ. Res. 102:225–230, 2000.

    Google Scholar 

  43. Pauly, R. R., A. Passaniti, C. Bilato, R. Monticone, L. Cheng, N. Papadopoulos, Y. A. Gluzband, L. Smith, C. Weinstein, E. G. Lakatta, and M. T. Crow. Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Circ. Res. 75:41–54, 1994.

    Google Scholar 

  44. Porter, K. E., I. M. Loftus, M. Peterson, P. R. F. Bell, N. J. M. London, and M. M. Thompson. Marimastat inhibits neointimal thickening in a model of human vein graft stenosis. Br. J. Surg. 85:1373–1377, 1998.

    Article  Google Scholar 

  45. Rappitsch, G., and K. Perktold. Pulsatile albumin transport in large arteries: a numerical simulation study. J. Biomech. Eng. 118:511–519, 1996.

    Article  Google Scholar 

  46. Rekhter, M., S. Nicholls, M. Ferguson, and D. Gordon. Cell proliferation in human arteriovenous fistulas used for hemodialysis. Arterioscler. Thromb. Vasc. Biol. 13:609–617, 1993.

    Google Scholar 

  47. Roque, M., W. J. Kim, M. Gazdoin, A. Malik, E. D. Reis, J. T. Fallon, J. J. Badimon, I. F. Charo, and M. B. Taubman. ‘CCR2 deficiency decreases intimal hyperplasia after arterial injury’. Arterioscler. Thromb. Vasc. Biol. 22:554–559, 2002.

    Article  Google Scholar 

  48. Rotmans, J. I., E. Velema, H. J. M. Verhagen, J. D. Blankensteijn, J. J. P. Kastelein, D. P. V. de Kleijn, M. Yo, G. Pasterkamp, and E. S. G. Stroes. Rapid arteriovenous graft failure due to intimal hyperplasia: a porcine, bilateral, carotid arteriovenous graft model. J. Surg. Res. 113:161–171, 2003.

    Google Scholar 

  49. Roy-Chaudhury, P., V. P. Sukhatme, and A. K. Cheung. Hemodialysis vascular access dysfunction: from pathology to novel therapies. Blood Purif. 21:99–110, 2003.

    Article  Google Scholar 

  50. Roy-Chaudhury, P., V. P. Sukhatme, and A. K. Cheung. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J. Am. Soc. Nephrol. 17:1112–1127, 2006.

    Article  Google Scholar 

  51. Schmidt, A., and D. M. Stern. ‘Chemokines on the rise: MCP-1 and restenosis’. Arterioscler. Thromb. Vasc. Biol. 21:297–299, 2001.

    Google Scholar 

  52. Sho, E., M. Sho, T. M. Singh, H. Nanjo, M. Komatsu, C. Xu, H. Masuda, and C. K. Zarins. Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp. Mol. Pathol. 73:142–153, 2002.

    Article  Google Scholar 

  53. Shyy, Y. J., H. J. Hsieh, S. Usami, and S. Chien. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc. Natl Acad. Sci. USA 91:4678–4682, 1994.

    Article  Google Scholar 

  54. Sivanesan, S., T. V. How, R. A. Black, and A. Bakran. Flow patterns in the radiocephalic arteriovenous fistula: an in vitro study. J. Boimech. 32:915–925, 1999.

    Article  Google Scholar 

  55. Southgate, K. M., D. Mehta, M. B. Izzat, A. Newby, and G. D. Angelini. Increased secretion of basement membrane—degrading metalloproteinases in pig saphenous vein into carotid artery interposition grafts. Arterioscler. Thromb. Vasc. Biol. 19:1640–1649, 1999.

    Google Scholar 

  56. Stark, V. K., J. R. Hoch, T. F. Warner, and D. A. Hullett. Monocyte chemotactic protein-1 expression is associated with the development of vein graft intimal hyperplasia. Arterioscler. Thromb. Vasc. Biol. 17:1614–1621, 1997.

    Google Scholar 

  57. Streuli, C. Extracellular matrix remodelling and cellular differentiation. Curr. Opin. Cell Biol. 11(5):634–640, 1999.

    Article  Google Scholar 

  58. Swedberg, S. H., B. G. Brown, R. Sigley, T. N. Wight, D. Gordon, and S. C. Nicholls. Intimal fibromuscular hyperplasia at the venous anastomosis of PTFE grafts in hemodialysis patients: clinical, immunocytochemical, light and electron microscopic assessment. Circ. Res. 80:1726–1736, 1989.

    Google Scholar 

  59. Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, Jr., and C. F. Dewey, Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17(11):3102–3106, 1997.

    Google Scholar 

  60. Tu, C., and M. Deville. Pulsatile flow of non-Newtonian fluid through an arterial stenosis. J. Biomech. 30:125–132, 1996.

    Google Scholar 

  61. Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Hemodynamics and complications encountered with arteriovenous fistulas and grafts as vascular access for hemodialysis: a review. Ann. Biomed. Eng. 33:1142–1157, 2005.

    Article  Google Scholar 

  62. Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Comparison of the hemodynamics in 6 mm and 4–7 mm hemodialysis grafts by means of CFD. J. Biomech. 39:226–236, 2006.

    Article  Google Scholar 

  63. Walsh, M. T., E. G. Kavanagh, T. O’Brien, P. A. Grace, and T. McGloughlin. On the existence of an optimum end-to-side junctional geometry in peripheral bypass surgery—a computer generated study. Eur. J. Vasc. Endovasc. Surg. 26:649–656, 2003.

    Article  Google Scholar 

  64. Wang, H., and J. A. Keiser. Vascular endothelial growth factor correlates with matrix metalloproteinase-9 in the pleural effusion. Circ. Res. 83:832–840, 1998.

    Google Scholar 

  65. Weiss, M. F., V. Scivittaro, and J. M. Anderson. Oxidative stress and increased expression of growth factors in lesions of failed haemodialysis access. Am. J. Kidney Dis. 37:970–980, 2001.

    Article  Google Scholar 

  66. Wolff, R. A., M. Ryomoto, V. E. Stark, R. Malinowski, J. J. Tomas, M. A. Stinauer, D. A. Hullett, and J. R. Hoch. Antisense to transforming growth factor-beta1 messenger RNA reduces vein graft intimal hyperplasia and monocyte chemotactic protein 1. J. Vasc. Surg. 41:498–508, 2005.

    Article  Google Scholar 

  67. Wysocki, C. A., A. Panoskaltsis-Mortari, B. R. Blazar, J. S. Serody. Leukocyte migration and graft-versus-host disease. Blood 105(11):4191–4199, 2005.

    Google Scholar 

  68. Yamamura, M., T. Miyamoto, and H. Yao. Serum monocyte chemoattractant protein-1 levels in rat models of intimal hyperplasia. Int. J. Angiol. 11:80–82, 2002.

    Article  Google Scholar 

  69. Zahradka, P., G. Harding, B. Litchie, S. Thomas, J. P. Werner, D. P. Wilson, and N. Yurkova. Activation of MMP-2 in response to vascular injury is mediated by phosphatidylinositol 3-kinase-dependent expression of MT1-MMP. Am. J. Physiol. Heart Circ. Physiol. 287:H2861–H2870, 2004.

    Article  Google Scholar 

  70. Zou, T., Y. Hu, M. Mayr, H. dietrich, G. Wick, and Q. Xu. Reduced neointima hyperplasia of vein bypass grafts in intercellular adhesion molecule-1 deficient mice. Circ. Res. 86:434–440, 2000.

    Google Scholar 

  71. Zucker, S., J. Cao, and W. Chen. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650, 2000.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the department of Radiology at the Mid-Western Regional Hospital, Limerick. This research is supported by Enterprise Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, G.T., McGloughlin, T.M., O’Keeffe, L.M. et al. Realistic Temporal Variations of Shear Stress Modulate MMP-2 and MCP-1 Expression in Arteriovenous Vascular Access. Cel. Mol. Bioeng. 2, 591–605 (2009). https://doi.org/10.1007/s12195-009-0089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0089-z

Keywords

Navigation