Skip to main content
Log in

Focal Adhesion Induction at the Tip of a Functionalized Nanoelectrode

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Cells dynamically interact with their physical micro-environment through the assembly of nascent focal contacts and focal adhesions. The dynamics and mechanics of these contact points are controlled by transmembrane integrins and an array of intracellular adaptor proteins. In order to study the mechanics and dynamics of focal adhesion assembly, we have developed a technique for the timed induction of a nascent focal adhesion. Bovine aortic endothelial cells were approached at the apical surface by a nanoelectrode whose position was controlled with a resolution of 10 s of nanometers using changes in electrode current to monitor distance from the cell surface. Since this probe was functionalized with fibronectin, a focal contact formed at the contact location. Nascent focal adhesion assembly was confirmed using time-lapse confocal fluorescent images of red fluorescent protein—tagged talin, an adapter protein that binds to activated integrins. Binding to the cell was verified by noting a lack of change of electrode current upon retraction of the electrode. This study demonstrates that functionalized nanoelectrodes can enable precisely-timed induction and 3-D mechanical manipulation of focal adhesions and the assay of the detailed molecular kinetics of their assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anthis, N. J., K. L. Wegener, F. Ye, C. Kim, B. T. Goult, E. D. Lowe, I. Vakonakis, N. Bate, D. R. Critchley, M. H. Ginsberg, and I. D. Campbell. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 28:3623–3632, 2009.

    Article  Google Scholar 

  2. Ashkin, A., J. M. Dziedzic, and T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771, 1987.

    Article  Google Scholar 

  3. Askari, J. A., P. A. Buckley, A. P. Mould, and M. J. Humphries. Linking integrin conformation to function. J. Cell Sci. 122:165–170, 2009.

    Article  Google Scholar 

  4. Baneyx, G., L. Baugh, and V. Vogel. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl Acad. Sci. 99:5139–5143, 2002.

    Article  Google Scholar 

  5. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200:618–627, 1978.

    Article  Google Scholar 

  6. Binnig, G., C. F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett. 56:930–933, 1986.

    Article  Google Scholar 

  7. Bouaouina, M., Y. Lad, and D. A. Calderwood. The N-terminal domains of talin cooperate with the phosphotyrosine binding-like domain to activate beta1 and beta3 integrins. J. Biol. Chem. 283:6118–6125, 2008.

    Article  Google Scholar 

  8. Butcher, D. T., T. Alliston, and V. M. Weaver. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9:108–122, 2009.

    Article  Google Scholar 

  9. Calderwood, D. A. Integrin activation. J. Cell Sci. 117:657–666, 2004.

    Article  Google Scholar 

  10. Campbell, I. D., and M. H. Ginsberg. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem. Sci. 29:429–435, 2004.

    Article  Google Scholar 

  11. Castelain, M., F. Pignon, J. M. Piau, A. Magnin, M. Mercier-Bonin, and P. Schmitz. Removal forces and adhesion properties of Saccharomyces cerevisiae on glass substrates probed by optical tweezer. J. Chem. Phys. 127:135104, 2007.

    Google Scholar 

  12. Celedon, A., I. M. Nodelman, B. Wildt, R. Dewan, P. Searson, D. Wirtz, G. D. Bowman, and S. X. Sun. Magnetic tweezers measurement of single molecule torque. Nano. Lett. 9:1720–1725, 2009.

    Article  Google Scholar 

  13. Chen, S., and T. A. Springer. Selectin receptor ligand bonds: formation limited by shear rate and dissociation governed by the Bell model. Proc. Natl Acad. Sci. 98:950–955, 2001.

    Article  Google Scholar 

  14. Chiou, C. H. A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule. J. Micromech. Microeng. 15:109, 2005.

    Google Scholar 

  15. Choquet, D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48, 1997.

    Article  Google Scholar 

  16. Cluzel, P., A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron. DNA: an extensible molecule. Science 271:792–794, 1996.

    Article  Google Scholar 

  17. Critchley, D. R., and A. R. Gingras. Talin at a glance. J. Cell Sci. 121:1345–1347, 2008.

    Article  Google Scholar 

  18. Danilowicz, C., D. Greenfield, and M. Prentiss. Dissociation of ligand-receptor complexes using magnetic tweezers. Anal. Chem. 77:3023–3028, 2005.

    Article  Google Scholar 

  19. Davies, P. F., J. Zilberberg, and B. P. Helmke. Spatial microstimuli in endothelial mechanosignaling. Circ. Res. 92:359–370, 2003.

    Article  Google Scholar 

  20. de Pereda, J. M., K. L. Wegener, E. Santelli, N. Bate, M. H. Ginsberg, D. R. Critchley, I. D. Campbell, and R. C. Liddington. Structural basis for phosphatidylinositol phosphate kinase type Igamma binding to talin at focal adhesions. J. Biol. Chem. 280:8381–8386, 2005.

    Article  Google Scholar 

  21. Eibl, R. H., and V. T. Moy. Atomic force microscopy measurements of protein-ligand interactions on living cells. Methods Mol. Biol. 305:439–449, 2005.

    Google Scholar 

  22. Evans, E., K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587, 1995.

    Article  Google Scholar 

  23. Garcia-Alvarez, B., J. M. de Pereda, D. A. Calderwood, T. S. Ulmer, D. Critchley, I. D. Campbell, M. H. Ginsberg, and R. C. Liddington. Structural determinants of integrin recognition by talin. Mol. Cell. 11:49–58, 2003.

    Google Scholar 

  24. Geiger, B., J. P. Spatz, and A. D. Bershadsky. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33, 2009.

    Article  Google Scholar 

  25. Gorelik, J., Y. Zhang, A. I. Shevchuk, G. I. Frolenkov, D. Sanchez, M. J. Lab, I. Vodyanoy, C. R. W. Edwards, D. Klenerman, and Y. E. Korchev. The use of scanning ion conductance microscopy to image A6 cells. Mol. Cell. Endocrinol. 217:101–108, 2004.

    Article  Google Scholar 

  26. Gosse, C., and V. Croquette. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82:3314–3329, 2002.

    Article  Google Scholar 

  27. Gosse, C., and V. Croquette. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82:3314–3329, 2002.

    Article  Google Scholar 

  28. Hansma, P., B. Drake, O. Marti, S. Gould, and C. Prater. The scanning ion-conductance microscope. Science 243:641–643, 1989.

    Article  Google Scholar 

  29. Hassan, E., W. F. Heinz, M. D. Antonik, N. P. D’Costa, S. Nageswaran, C. A. Schoenenberger, and J. H. Hoh. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74:1564–1578, 1998.

    Article  Google Scholar 

  30. Huang, H., R. D. Kamm, and R. T. Lee. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287:C1–C11, 2004.

    Article  Google Scholar 

  31. Kegler, K., M. Salomo, and F. Kremer. Forces of interaction between DNA-grafted colloids: an optical tweezer measurement. Phys. Rev. Lett. 98:058304, 2007.

    Google Scholar 

  32. Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng. 125:334–341, 2003.

    Article  Google Scholar 

  33. Konstantopoulos, K., W. D. Hanley, and D. Wirtz. Receptor-ligand binding: [`]catch’ bonds finally caught. Curr. Biol. 13:R611–R613, 2003.

    Article  Google Scholar 

  34. Korchev, Y., C. Bashford, M. Milovanovic, I. Vodyanoy, and M. Lab. Scanning ion conductance microscopy of living cells. Biophys. J. 73:653–658, 1997.

    Article  Google Scholar 

  35. Leipzig, N. D., and K. A. Athanasiou. Unconfined creep compression of chondrocytes. J. Biomech. 38:77–85, 2005.

    Article  Google Scholar 

  36. Lele, T. P., C. K. Thodeti, and D. E. Ingber. Force meets chemistry: Analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching. J. Cell. Biochem. 97:1175–1183, 2006.

    Article  Google Scholar 

  37. Marshall, B. T., M. Long, J. W. Piper, T. Yago, R. P. McEver, and C. Zhu. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193, 2003.

    Article  Google Scholar 

  38. Mathur, A. B., G. A. Truskey, and W. Monty Reichert. Total internal reflection microscopy and atomic force microscopy (TIRFM-AFM) to study stress transduction mechanisms in endothelial cells. Crit. Rev. Biomed. Eng. 28:197–202, 2000.

    Google Scholar 

  39. Mathur, A. B., G. A. Truskey, and W. Monty Reichert. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78:1725–1735, 2000.

    Article  Google Scholar 

  40. Matthews, B. D., D. R. Overby, F. J. Alenghat, J. Karavitis, Y. Numaguchi, P. G. Allen, and D. E. Ingber. Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochem. Biophys. Res. Commun. 313:758–764, 2004.

    Article  Google Scholar 

  41. Moffitt, J. R., Y. R. Chemla, D. Izhaky, and C. Bustamante. Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc. Natl Acad. Sci. USA. 103:9006–9011, 2006.

    Article  Google Scholar 

  42. Neuman, K. C., and A. Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5:491–505, 2008.

    Article  Google Scholar 

  43. Ohayon, J., P. Tracqui, R. Fodil, S. Fereol, V. M. Laurent, E. Planus, and D. Isabey. Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: a finite element model based on a homogenization approach. J. Biomech. Eng. 126:685–698, 2004.

    Article  Google Scholar 

  44. Orr, A. W., B. P. Helmke, B. R. Blackman, and M. A. Schwartz. Mechanisms of mechanotransduction. Dev. Cell 10:11–20, 2006.

    Article  Google Scholar 

  45. Panhorst, M., P. B. Kamp, G. Reiss, and H. Bruckl. Sensitive bondforce measurements of ligand-receptor pairs with magnetic beads. Biosens. Bioelectron. 20:1685–1689, 2005.

    Article  Google Scholar 

  46. Peterman, E. J. G., F. Gittes, and C. F. Schmidt. Laser-induced heating in optical traps. Biophys. J. 84:1308–1316, 2003.

    Article  Google Scholar 

  47. Radmacher, M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16:47–57, 1997.

    Article  Google Scholar 

  48. Rief, M., F. Oesterhelt, B. Heymann, and H. E. Gaub. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297, 1997.

    Article  Google Scholar 

  49. Riveline, D., E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, and A. D. Bershadsky. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–1186, 2001.

    Article  Google Scholar 

  50. Roichman, Y., V. Wong, and D. G. Grier. Colloidal transport through optical tweezer arrays. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 75:011407, 2007.

    Google Scholar 

  51. Rotsch, C., and M. Radmacher. Drug-Induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78:520–535, 2000.

    Article  Google Scholar 

  52. Sawada, Y., and M. P. Sheetz. Force transduction by Triton cytoskeletons. J. Cell Biol. 156:609–615, 2002.

    Article  Google Scholar 

  53. Seol, Y., A. E. Carpenter, and T. T. Perkins. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31:2429–2431, 2006.

    Article  Google Scholar 

  54. Snyder, K. V., A. M. Kriegstein, and F. Sachs. A convenient electrode holder for glass pipettes to stabilize electrode potentials. Pflugers Arch. 438:405–411, 1999.

    Article  Google Scholar 

  55. Tadokoro, S., S. J. Shattil, K. Eto, V. Tai, R. C. Liddington, J. M. de Pereda, M. H. Ginsberg, and D. A. Calderwood. Talin binding to integrin beta tails: a final common step in integrin activation. Science 302:103–106, 2003.

    Article  Google Scholar 

  56. Tanase, M., N. Biais, and M. Sheetz. Magnetic tweezers in cell biology. Methods Cell Biol. 83:473–493, 2007.

    Article  Google Scholar 

  57. Wang, Y., E. L. Botvinick, Y. Zhao, M. W. Berns, S. Usami, R. Y. Tsien, and S. Chien. Visualizing the mechanical activation of Src. Nature 434:1040–1045, 2005.

    Article  Google Scholar 

  58. Wolenski, J. S., R. E. Cheney, M. S. Mooseker, and P. Forscher. In vitro motility of immunoadsorbed brain myosin-V using a Limulus acrosomal process and optical tweezer-based assay. J. Cell Sci. 108(Pt 4):1489–1496, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Butler.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, D.E., Bae, C. & Butler, P.J. Focal Adhesion Induction at the Tip of a Functionalized Nanoelectrode. Cel. Mol. Bioeng. 4, 616–626 (2011). https://doi.org/10.1007/s12195-011-0214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0214-7

Keywords

Navigation