Skip to main content
Log in

A Comparative Study of Eighteen Self-adaptive Metaheuristic Algorithms for Truss Sizing Optimisation

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Performance comparison of meta-heuristics (MHs) is conducted for truss sizing design. Six traditional truss sizing design problems with mass objective function subject to displacement and stress constraints were employed for performance test. The test problems have two types with and without including buckling constraints. Eighteen self-adaptive MHs from literature are employed to tackle the truss sizing problems. The results from implementing the self-adaptive MHs are compared in terms of convergence rate and consistency. It is found that for the test problem without buckling constraints, the top two optimisers according to the statistical Wilcoxon rank sum tests are Success-History Based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) and Success-History Based Adaptive Differential Evolution (SHADE) while the top two optimiser for the test problems with buckling constraints is L-SHADE and L-SHADE with Eigenvector-Based Crossover and Successful-Parent-Selecting Framework (SPS-L-SHADE-EIG). The buckling constraints are significantly important and should be included to truss design subjected to static loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrari, A. and Atai, A. A. (2013). “Fully stressed design evolution strategy for shape and size optimization of truss structures.” Computers & Structures, Vol. 123, pp. 58–67, DOI: 10.1016/j.compstruc.2013.04.013.

    Article  Google Scholar 

  • Ahrari, A., Atai, A. A., and Deb, K. (2015). “Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy.” Engineering Optimization, Vol. 47, No. 8, pp. 1063–1084, DOI: 10.1080/0305215X.2014.947972.

    Article  MathSciNet  Google Scholar 

  • Baluja, S. (1994). Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning, In Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning Ed CMU-CS-94-163, t.r. Carnagie Mellon University, Pittsburgh.

    Google Scholar 

  • Baykasoğlu, A. and Ozsoydan, F. B. (2014). “An improved firefly algorithm for solving dynamic multidimensional knapsack problems.” Expert Systems with Applications, Vol. 41, No. 8, pp. 3712–3725, DOI: 10.1016/j.eswa.2013.11.040.

    Article  Google Scholar 

  • Beck, A., Ben-Tal, A., and Tetruashvili, L. (2010). “A sequential parametric convex approximation method with applications to nonconvex truss topology design problems.” Journal of Global Optimization, Vol. 47, No. 1, pp. 29–51, DOI: 10.1007/s10898-009-9456-5.

    Article  MathSciNet  MATH  Google Scholar 

  • Bekdaş, G., Nigdeli, S. M., and Yang, X.-S. (2015). “Sizing optimization of truss structures using flower pollination algorithm.” Applied Soft Computing, Vol. 37, pp. 322–331, DOI: 10.1016/j.asoc.2015.08.037.

    Article  Google Scholar 

  • Bekdas, G., Nigdeli, S. M., and Türakin, O. H. (2017a). “Non-Linear programing for sizing optimization of truss structures.” International Journal of Theoretical and Applied Mechanics, Vol. 1, pp. 274–284.

    Google Scholar 

  • Bekdas, G., Nigdeli, S. M., and Yang, X. S. (2017b). “Size optimization of truss structures employing flower pollination algorithm without grouping structural members.” International Journal of Theoretical and Applied Mechanics, Vol. 1, pp. 269–273.

    Google Scholar 

  • Brest, J., Greiner, S., Boskovic, B., Mernik, M., and Zumer, V. (2006). “Self-Adapting control parameters in differential evolution: A comparative study on numerical benchmark problems.” Evolutionary Computation, IEEE Transactions on, Vol. 10, No. 6, pp. 646–657, DOI: 10.1109/TEVC.2006.872133.

    Article  Google Scholar 

  • Bureerat, S. (2011). Improved Population-Based Incremental Learning in Continuous Spaces, In Improved Population-Based Incremental Learning in Continuous Spaces Eds Gaspar-Cunha, A., Takahashi, R., Schaefer, G. & Costa, L. pp. 77–86. Springer Berlin Heidelberg, DOI: 10.1007/978-3-642-20505-7_6.

    Google Scholar 

  • Bureerat, S. and Pholdee, N. (2015). “Optimal truss sizing using an adaptive differential evolution algorithm.” Journal of Computing in Civil Engineering, 04015019, DOI: 10.1061/(ASCE)CP.1943-5487.0000487#sthash.zn4UhHlF.dpuf.

    Google Scholar 

  • Camp, C. V. and Farshchin, M. (2014). “Design of space trusses using modified teaching–learning based optimization.” Engineering Structures, Vols. 62–63, pp. 87–97, DOI: 10.1016/j.engstruct.2014.01.020.

    Article  Google Scholar 

  • Dede, T. and Ayvaz, Y. (2015). “Combined size and shape optimization of structures with a new meta-heuristic algorithm.” Applied Soft Computing, Vol. 28, pp. 250–258, DOI: 10.1016/j.asoc.2014.12.007

    Article  Google Scholar 

  • Degertekin, S. O. (2012). “Improved harmony search algorithms for sizing optimization of truss structures.” Computers & Structures, Vols. 92–93, pp. 229–241, DOI: 10.1016/j.compstruc.2011.10.022.

    Article  Google Scholar 

  • Degertekin, S. O. and Hayalioglu, M. S. (2013). “Sizing truss structures using teaching-learning-based optimization.” Computers & Structures, Vol. 119, pp. 177–188, DOI: 10.1016/j.compstruc.2012.12.011.

    Article  Google Scholar 

  • Degertekin, S. O., Lamberti, L., and Hayalioglu, M. S. (2017). “Heat transfer search algorithm for sizing optimization of truss structures.” Latin American Journal of Solids and Structures, Vol. 14, No. 3, pp. 373–397, DOI: 10.1590/1679-78253297.

    Article  Google Scholar 

  • Elsayed, S. M., Sarker, R. A., Essam, D. L., and Hamza, N. M. (2014). Testing united multi-operator evolutionary algorithms on the CEC2014 real-parameter numerical optimization, In Testing united multioperator evolutionary algorithms on the CEC2014 real-parameter numerical optimization pp. 1650–1657, DOI: 10.1109/CEC.2014. 6900308.

    Google Scholar 

  • Flager, F., Adya, A., Haymaker, J., and Fischer, M. (2014). “A bi-level hierarchical method for shape and member sizing optimization of steel truss structures.” Computers & Structures, Vol. 131, pp. 1–11, DOI: 10.1016/j.compstruc.2013.10.004.

    Article  Google Scholar 

  • García-Martínez, C., Lozano, M., Herrera, F., Molina, D., and Sánchez, A. M. (2008). “Global and local real-coded genetic algorithms based on parent-centric crossover operators.” European Journal of Operational Research, Vol. 185, No. 3, pp. 1088–1113, DOI: 10.1016/j.ejor.2006. 06.043.

    Article  MATH  Google Scholar 

  • Gholizadeh, S. and Barzegar, A. (2012). “Shape optimization of structures for frequency constraints by sequential harmony search algorithm.” Engineering Optimization, Vol. 45, No. 6, pp. 627–646, DOI: 10.1080/0305215X.2012.704028.

    Article  MathSciNet  Google Scholar 

  • Hajela, P. (1990). “Genetic search-An approach to the nonconvex optimization problem.” AIAA Journal, Vol. 28, No. 7, pp. 1205–1210, DOI: 10.2514/3.25195.

    Article  Google Scholar 

  • Hansen, N., Muller, S. D., and Koumoutsakos, P. (2003). “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES).” Evol. Comput., Vol. 11, No. 1, pp. 1–18, DOI: 10.1162/106365603321828970.

    Article  Google Scholar 

  • Hosseini, K., Nodoushan, E. J., Barati, R., and Shahheydari, H. (2016). “Optimal design of labyrinth spillways using meta-heuristic algorithms.” KSCE Journal of Civil Engineering, Vol. 20, No. 1, pp. 468–477, DOI: 10.1007/s12205-015-0462-5.

    Article  Google Scholar 

  • Husseinzadeh Kashan, A. (2011). “An efficient algorithm for constrained global optimization and application to mechanical engineering design: League Championship Algorithm (LCA).” Computer-Aided Design, Vol. 43, No. 12, pp. 1769–1792, DOI: 10.1016/j.cad.2011. 07.003.

    Article  Google Scholar 

  • Jia, G., Wang, Y., Cai, Z., and Jin, Y. (2013). “An improved (μ+λ)-constrained differential evolution for constrained optimization.” Information Sciences, Vol. 222, pp. 302–322, DOI: 10.1016/j.ins. 2012.01.017.

    Article  MathSciNet  MATH  Google Scholar 

  • Jung, J., Jayakrishnan, R., and Nam, D. (2015). “High coverage pointto-point transit: Hybrid evolutionary approach to local vehicle routing.” KSCE Journal of Civil Engineering, Vol. 19, No. 6, pp. 1882–1891, DOI: 10.1007/s12205-014-0069-2.

    Article  Google Scholar 

  • Kaveh, A. and Ilchi Ghazaan, M. (2015). “Hybridized optimization algorithms for design of trusses with multiple natural frequency constraints.” Advances in Engineering Software, Vol. 79, pp. 137–147, DOI: 10.1016/j.advengsoft.2014.10.001.

    Article  Google Scholar 

  • Kaveh, A. and Ilchi Ghazaan, M. (2016). “Optimal design of dome truss structures with dynamic frequency constraints.” Structural and Multidisciplinary Optimization, Vol. 53, No. 3, pp. 605–621, DOI: 10.1007/s00158-015-1357-2.

    Article  MathSciNet  Google Scholar 

  • Kaveh, A. and Javadi, S.M. (2014). “Shape and size optimization of trusses with multiple frequency constraints using harmony search and ray optimizer for enhancing the particle swarm optimization algorithm.” Acta Mechanica, Vol. 225, No. 6, pp. 1595–1605, DOI: 10.1007/s00707-013-1006-z.

    Article  MATH  Google Scholar 

  • Kaveh, A. and Khayatazad, M. (2013). “Ray optimization for size and shape optimization of truss structures.” Computers & Structures, Vol. 117, pp. 82–94, DOI: 10.1016/j.compstruc.2012.12.010

    Article  Google Scholar 

  • Kaveh, A. and Mahdavi, V. R. (2015). “A hybrid CBO–PSO algorithm for optimal design of truss structures with dynamic constraints.” Applied Soft Computing, Vol. 34, pp. 260–273, DOI: 10.1016/j.asoc.2015.05.010.

    Article  Google Scholar 

  • Kaveh, A. and Talatahari, S. (2009). “Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures.” Computers and Structures, Vol. 87, Issues 5–6, pp. 267–283, DOI: 10.1016/j.compstruc.2009.01.003.

    Article  Google Scholar 

  • Kaveh, A. and Talatahari, S. (2010). “A novel heuristic optimization method: Charged system search.” Acta Mechanica, Vol. 213, No. 3, pp. 267–289, DOI: 10.1007/s00707-009-0270-4.

    Article  MATH  Google Scholar 

  • Kaveh, A. and Zolghadr, A. (2012). “Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability.” Computers & Structures, Vols. 102–103, pp. 14–27, DOI: 10.1016/j.compstruc.2012.03.016.

    Article  Google Scholar 

  • Kaveh, A. and Zolghadr, A. (2014). “Enhanced bat algorithm for optimal design of skeletal structure.” Asian Journal of Civil Engineering (Building and Housing), Vol. 15, pp. 179–212.

    Google Scholar 

  • Kaveh, A., Bakhshpoori, T., and Afshari, E. (2014). “An efficient hybrid particle swarm and swallow swarm optimization algorithm.” Computers & Structures, Vol. 143, pp. 40–59, DOI: 10.1016/j.compstruc.2014. 07.012.

    Article  Google Scholar 

  • Kaveh, A., Sheikholeslami, R., Talatahari, S., and Keshvari-Ilkhichi, M. (2014). “Chaotic swarming of particles: A new method for size optimization of truss structures.” Advances in Engineering Software, Vol. 67, pp. 136–147, DOI: 10.1016/j.advengsoft.2013.09.006.

    Article  Google Scholar 

  • Khatibinia, M. and Yazdani, H. (2017). “Accelerated multi-gravitational search algorithm for size optimization of truss structures.” Swarm and Evolutionary Computation, in press, DOI: 10.1016/j.swevo.2017.07.001.

    Google Scholar 

  • Lei, C., Hai-lin, L., Chaoda, P., and Shengli, X. (2015). “An improved covariance matrix leaning and searching preference algorithm for solving CEC 2015 benchmark problems.” In An improved covariance matrix leaning and searching preference algorithm for solving CEC 2015 benchmark problems, pp. 1041–1045, DOI: 10.1109/CEC. 2015.7257004.

    Google Scholar 

  • Lei, C., Hai-lin, L., Zhe, Z., and Shengli, X. (2014). “An evolutionary algorithm based on Covariance Matrix Leaning and Searching Preference for solving CEC 2014 benchmark problems.” In An evolutionary algorithm based on Covariance Matrix Leaning and Searching Preference for solving CEC 2014 benchmark problems, pp. 2672–2677, DOI: 10.1109/CEC.2014.6900594.

    Google Scholar 

  • Li, J.-P. (2014). “Truss topology optimization using an improved species-conserving genetic algorithm.” Engineering Optimization, Vol. 47, No. 1, pp. 107–128, DOI: 10.1080/0305215X.2013.875165

    Article  MathSciNet  Google Scholar 

  • Liang, J. J., Qin, A. K., Suganthan, P. N., and Baskar, S. (2006). “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions.” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 3, pp. 281–295, DOI: 10.1109/TEVC.2005.857610.

    Article  Google Scholar 

  • Mallipeddi, R., Suganthan, P. N., Pan, Q. K., and Tasgetiren, M. F. (2011). “Differential evolution algorithm with ensemble of parameters and mutation strategies.” Applied Soft Computing, Vol. 11, No. 2, pp. 1679–1696, DOI: 10.1016/j.asoc.2010.04.024.

    Article  Google Scholar 

  • Meng, T. and Pan, Q.-K. (2017). “An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem.” Applied Soft Computing, Vol. 50, pp. 79–93, DOI: 10.1016/j.asoc.2016.11.023.

    Article  Google Scholar 

  • Miguel, L. F. F. and Fadel Miguel, L. F. (2012). “Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms.” Expert Systems with Applications, Vol. 39, No. 10, pp. 9458–9467, DOI: 10.1016/j.eswa. 2012.02.113.

    Article  Google Scholar 

  • Mortazavi, A. and Toğan, V. (2017). “Sizing and layout design of truss structures under dynamic and static constraints with an integrated particle swarm optimization algorithm.” Applied Soft Computing, Vol. 51, pp. 239–252, DOI: 10.1016/j.asoc.2016.11.032.

    Article  Google Scholar 

  • Muthiah-Nakarajan, V. and Noel, M. M. (2016). “Galactic Swarm Optimization: A new global optimization metaheuristic inspired by galactic motion.” Applied Soft Computing, Vol. 38, pp. 771–787, DOI: 10.1016/j.asoc.2015.10.034.

    Article  Google Scholar 

  • Nariman, N. A. (2016). “Aerodynamic stability parameters optimization and global sensitivity analysis for a cable stayed Bridge.” KSCE Journal of Civil Engineering, pp. 1–16, DOI: 10.1007/s12205-016-0962-y.

    Google Scholar 

  • Noilublao, N. and Bureerat, S. (2011). “Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms.” Computers & Structures, Vol. 89, Nos. 23–24, pp. 2531–2538, DOI: 10.1016/j.compstruc. 2011.08.010.

    Article  Google Scholar 

  • Noilublao, N. and Bureerat, S. (2013). “Simultaneous topology, shape, and sizing optimisation of plane trusses with adaptive ground finite elements using MOEAs.” Mathematical Problems in Engineering, Vol. 2013, Article ID 838102, 9 pages, DOI: 10.1155/2013/838102.

    Google Scholar 

  • Pholdee, N. and Bureerat, S. (2013). “Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses.” Information Sciences, Vol. 223, pp. 136–152, DOI: 10.1016/j.ins.2012.10.008.

    Article  MathSciNet  Google Scholar 

  • Pholdee, N. and Bureerat, S. (2014a). “Hybrid real-code populationbased incremental learning and approximate gradients for multiobjective truss design. Engineering Optimization, Vol. 46, No. 8, pp. 1032–1051, DOI: 10.1080/0305215X.2013.823194.

    Article  MathSciNet  Google Scholar 

  • Pholdee, N. and Bureerat, S. (2014b). “Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints.” Advances in Engineering Software, Vol. 75, pp. 1–13, DOI: 10.1016/j.advengsoft.2014.04.005.

    Article  Google Scholar 

  • Qin, A. K., Huang, V. L., and Suganthan, P. N. (2009). “Differential evolution algorithm with strategy adaptation for global numerical optimization.” IEEE Transactions on Evolutionary Computation, Vol. 13, No. 2, pp. 398–417, DOI: 10.1109/TEVC.2008.927706.

    Article  Google Scholar 

  • Rao, R. V., Savsani, V. J., and Vakharia, D. P. (2011). “Teaching–learningbased optimization: A novel method for constrained mechanical design optimization problems.” Computer-Aided Design, Vol. 43, No. 3, pp. 303–315, DOI: 10.1016/j.cad.2010.12.015.

    Article  Google Scholar 

  • Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. (2009). “GSA: A Gravitational Search Algorithm.” Information Sciences, Vol. 179, No. 13, pp. 2232–2248, DOI: 10.1016/j.ins.2009.03.004.

    Article  MATH  Google Scholar 

  • Richardson, J., Adriaenssens, S., Bouillard, P., and Filomeno Coelho, R. (2012). “Multiobjective topology optimization of truss structures with kinematic stability repair.” Structural and Multidisciplinary Optimization, Vol. 46, No. 4, pp. 513–532, DOI: 10.1007/s00158-012-0777-5.

    Article  MATH  Google Scholar 

  • Richardson, J.N., Coelho, R. F., and Adriaenssens, S. (2016). “A unified stochastic framework for robust topology optimization of continuum and truss-like structures.” Engineering Optimization, Vol. 48, No. 2, pp. 334–350, DOI: 10.1080/0305215X.2015.1011152.

    Article  MathSciNet  Google Scholar 

  • Sallam, K. M., Sarker, R. A., Essam, D. L., and Elsayed, S. M. (2015). “Neurodynamic differential evolution algorithm and solving CEC2015 competition problems.” In Neurodynamic differential evolution algorithm and solving CEC2015 competition problems, pp. 1033–1040, DOI: 10.1109/CEC.2015.7257003.

    Google Scholar 

  • Sheikholeslami, R., Khalili, B. G., Sadollah, A., and Kim, J. (2016). “Optimization of reinforced concrete retaining walls via hybrid firefly algorithm with upper bound strategy.” KSCE Journal of Civil Engineering, Vol. 20, No. 6, pp. 2428–2438, DOI: 10.1007/s12205-015-1163-9.

    Article  Google Scholar 

  • Shu-Mei, G., Tsai, J. S. H., Chin-Chang, Y., and Pang-Han, H. (2015). “A self-optimization approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set.” Evolutionary Computation (CEC), 2015 IEEE Congress on, pp. 1003–1010, DOI: 10.1109/CEC.2015. 7256999.

    Google Scholar 

  • Stolpe, M. and Svanberg, K. (2001). “On the trajectories of the epsilonrelaxation approach for stress-constrained truss topology optimization.” Structural and Multidisciplinary Optimization, Vol. 21, No. 2, pp. 140–151, DOI: 10.1007/s001580050178.

    Article  Google Scholar 

  • Talaei, A. S., Nasrollahi, A., and Ghayekhloo, M. (2016). “An automated approach for optimal design of prestressed concrete slabs using PSOHS.” KSCE Journal of Civil Engineering, pp. 1–10, DOI: 10.1007/s12205-016-1126-9, DOI: 10.1007/s12205-016-1126-9.

    Google Scholar 

  • Tan, Y. and Zhu, Y. (2010). Fireworks Algorithm for Optimization, In Fireworks Algorithm for Optimization Eds Tan, Y., Shi, Y. & Tan, K. pp. 355–364. Springer Berlin Heidelberg.

    Google Scholar 

  • Tanabe, R. and Fukunaga, A. (2013). “Evaluating the performance of SHADE on CEC 2013 benchmark problems.” Evolutionary Computation (CEC), 2013 IEEE Congress on, pp. 1952–1959, DOI: 10.1109/CEC.2013.6557798.

    Chapter  Google Scholar 

  • Tanabe, R. and Fukunaga, A. S. (2014). “Improving the search performance of SHADE using linear population size reduction.” Evolutionary Computation (CEC), 2014 IEEE Congress on, pp. 1658–1665, DOI: 10.1109/CEC.2014.6900380.

    Chapter  Google Scholar 

  • Teh, Y. S. and Rangaiah, G. P. (2003). “Tabu search for global optimization of continuous functions with application to phase equilibrium calculations.” Computers & Chemical Engineering, Vol. 27, No. 11, pp. 1665–1679, DOI: 10.1016/S0098-1354(03)00134-0.

    Article  Google Scholar 

  • Wang, Y., Cai, Z., and Zhang, Q. (2012). “Enhancing the search ability of differential evolution through orthogonal crossover.” Information Sciences, Vol. 185, No. 1, pp. 153–177, DOI: 10.1016/j.ins.2011.09.001.

    Article  MathSciNet  Google Scholar 

  • Yang, B., Zhang, Q., and Li, H. (2015). “Solving truss topological optimization with discrete design variables via swarm intelligence.” KSCE Journal of Civil Engineering, Vol. 19, No. 4, pp. 952–963, DOI: 10.1007/s12205-015-0501-2.

    Article  Google Scholar 

  • Yang, B., Zhang, Q., and Zhou, Z. (2015). “Solving truss topological optimization via Swarm Intelligence.” KSCE Journal of Civil Engineering, Vol. 19, No. 7, pp. 1962–1972, DOI: 10.1007/s12205-015-0218-2.

    Article  Google Scholar 

  • Yang, X.-S. and Deb, S. (2010). “Engineering optimisation by cuckoo search.” International Journal of Mathematical Modelling and Numerical Optimisation, Vol. 1, No. 4, pp. 330–343, DOI: 10.1504/IJMMNO.2010.03543.

    Article  MATH  Google Scholar 

  • Yang, X. S., and Hossein Gandomi, A. (2012). “Bat algorithm: a novel approach for global engineering optimization.” Engineering Computations, Vol. 29, No. 5, pp. 464–483, DOI: 10.1108/02644401211235834.

    Article  Google Scholar 

  • Yong, W. and Zixing, C. (2012). “Combining multiobjective optimization with differential evolution to solve constrained optimization problems.” IEEE Transactions on Evolutionary Computation, Vol. 16, No. 1, pp. 117–134, DOI: 10.1109/TEVC.2010.2093582.

    Article  Google Scholar 

  • Yong, W., Zixing, C., and Qingfu, Z. (2011). “Differential evolution with composite trial vector generation strategies and control parameters.” IEEE Transactions On Evolutionary Computation, Vol. 15, No. 1, pp. 55–66, DOI: 10.1109/TEVC.2010.2087271.

    Article  Google Scholar 

  • Zhang, J. and Sanderson, A.C. (2009). “JADE: Adaptive differential evolution with optional external archive.” IEEE Transactions on Evolutionary Computation, Vol. 13, No. 5, pp. 945–958, DOI: 10.1109/TEVC.2009.2014613.

    Article  Google Scholar 

  • Zhao, H., Zhao, M., and Zhu, C. (2016). “Reliability-based optimization of geotechnical engineering using the artificial bee colony algorithm.” KSCE Journal of Civil Engineering, Vol. 20, No. 5, pp. 1728–1736, DOI: 10.1007/s12205-015-0117-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujin Bureerat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pholdee, N., Bureerat, S. A Comparative Study of Eighteen Self-adaptive Metaheuristic Algorithms for Truss Sizing Optimisation. KSCE J Civ Eng 22, 2982–2993 (2018). https://doi.org/10.1007/s12205-017-0095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0095-y

Keywords

Navigation