Skip to main content
Log in

Production of electrolyzed water for home-use based on electrodeposited macroporous platinum

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Although electrolyzed water is a efficient disinfectant to eradicate microorganisms, it is rarely used for domestic applications. Among the various types of electrolyzed water, both slightly acidic electrolyzed water and neutral electrolyzed water are weakly acidic and contain hypochlorous acid (HOCl) which is a strong anti-bacterial agent. To avoid side effects, such as stimulation of skin, the free chlorine concentration must be < 5 mg/L. Considering that the free chlorine concentration of tap water is 4 mg/L, the range from 3 to 5 mg/L is very stable for home use. This is generally referred to as low-level hypochlorous acid fluid. Hence, we developed an electrolysis device that can directly produce low-level hypochlorous fluid. To reduce the production time, we designed a macroporous electrode with a roughness of macroscopic dimensions, which can enhance a sluggish chemical reaction. Using this principle, the macroporous electrode has shown potential applicability and the efficient bactericidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kraft, Electrochemical water disinfection: A short review, Platinum Metals Review, 52 (3) (2008) 177–185.

    Article  Google Scholar 

  2. A. T. Kuhn and R. B. Lartey, Electrolytic generation “insitu” of sodium hypochlorite, Chemie Ingenieur Technik, 47 (4) (1975) 129–135.

    Article  Google Scholar 

  3. A. F. Adamson, B. G. Lever and W. F. Stones, The production of hypochlorite by direct electrolysis of sea water: Electrode materials and design of cells for the process, Journal of Chemical Technology and Biotechnology, 13 (11) (1963) 483–495.

    Google Scholar 

  4. G. Patermarakis and E. Fountoukidis, Disinfection of water by electrochemical treatment, Water Research, 24 (12) (1990) 1491–1496.

    Article  Google Scholar 

  5. K. Umimoto, H. Kawanishi, Y. Tachibana, N. Kawai, S. Nagata and J. Yanagida, Development of automatic controller for providing multi electrolyzed water, IFMBE Proceedings, 25 (7) (2009) 306–309.

    Article  Google Scholar 

  6. K. Umimoto, S. Nagata and Y. Tachibana, Development of device producing electrolyzed water for home care, Journal of Physics Conference Series, 21 (2013) 738–741.

    Google Scholar 

  7. A. Kraft, M. Blaschke, D. Kreysig, B. Sandt, F. Schroder and J. Rennau, Electrochemical water disinfection. Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits, Journal of Applied Electrochemistry, 29 (8) (1999) 895–902.

    Article  Google Scholar 

  8. N. Nakajima, T. Nakano, F. Harada, H. Taniguchi, I. Yokoyama, J. Hirose, E. Daikoku and K. Sano, Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis, Journal of Microbiological Methods, 57 (2) (2004) 163–173.

    Article  Google Scholar 

  9. M. E. H. Bergmann and A. S. Koparal, Studies on electrochemical disinfectant production using anodes containing RuO2, Journal of Applied Electrochemistry, 35 (12) (2005) 1321–1329.

    Article  Google Scholar 

  10. K. Hotta, K. Kawaguchi, K. Saito, K. Ochi and T. Nakayama, Antimicrobial activity of electrolyzed NaCl solu-tion: effect on the growth of Streptomyces spp, Actinomyatologica, 8 (2) (1994) 51–56.

    Article  Google Scholar 

  11. K. Umimoto, Y. Emori, H. Fujita and K. Jokei, Evaluation of strong acidic electrolyzed water for the disinfection, IEEE-EMBS EMBS Asian-Pracific Conference (2003) 360–361.

    Google Scholar 

  12. A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder and J. Rennau, Electrochemical water disinfection Part 1: Hypochlorite production from very dilute chloride solutions, Journal of Applied Electrochemistry, 29 (7) (1999) 859–866.

    Article  Google Scholar 

  13. R. F. Service, Bringing fuel cells down to earth, Science, 285 (5428) (1999) 682–685.

    Article  Google Scholar 

  14. H. Boo, S. Park, B. Ku, Y. Kim, J. H. Park, H. C. Kim and T. D. Chung, Ionic strength-controlled virtual area of mesoporous platinum electrode, Journal of the American Chemical Society, 126 (14) (2004) 4524–4525.

    Article  Google Scholar 

  15. A. T. Bell, The impact of nanoscience on heterogeneous catalysis, Science, 299 (5613) (2003) 1688–1691.

    Article  Google Scholar 

  16. E. Antolini, Formation of carbon-supported PtM alloys for low temperature fuel cells: a review, Materials Chemistry and Physics, 78 (3) (2003) 563–573.

    Article  Google Scholar 

  17. D. R. Rolison, Catalytic nanoarchitectures?the importance of nothing and the unimportance of periodicity, Science, 299 (5613) (2003) 1698–1701.

    Article  Google Scholar 

  18. Z. Chen, L. Xu, W. Li, M. Waje and Y. Yan, Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells, Nanotechnology, 17 (20) (2006) 5254–5259.

    Article  Google Scholar 

  19. N. B. Philip, R. B. Peter and A. G. Mohamed, Electrochemical deposition of macroporous platinum, palladium and cobaltfilms using polystyrene latex sphere templates, Chemical Commumicaions (2000) 1671–1672.

    Google Scholar 

  20. M. Eiichi and S. Masayuki, Preparation of ordered macroporous platinum metal particles, e-Journal of Surface Science and Nanotechnology, 4 (2006) 451–453.

    Article  Google Scholar 

  21. A. Hauch, I. K. Brodersen, M. Chen and M. B. Mogensen, Ni/YSZ electrodes structures optimized for increased electro-lysis performance and durability, Solid State Ionics, 293 (2016) 27–36.

    Article  Google Scholar 

  22. C. G. Buch, I. H. Cardona, E. M. Ortega, S. Mestre and V. P. Herranz, Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis, International Journal of Hydrogen Energy, 41 (2) (2016) 764–772.

    Article  Google Scholar 

  23. M. Li, T. Liu, L. Fan, X. Bo and L. Guo, Three-dimensional hierarchical meso/macroporous Fe/Co-nitrogendoped carbon encapsulated FeCo alloy nanoparticles prepared without any template or surfactant: High-performance bifunctional oxygen electrodes, Journal of Alloys and Compounds, 686 (25) (2016) 467–478.

    Article  Google Scholar 

  24. S. Ferdi and S. Wolfgang, Microporous and Mesoporous Materials, Advanced Material, 9 (14) (2002) 629–638.

    Google Scholar 

  25. J. H. Han, H. K. Boo, S. J. Park and T. D. Chung, Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor, Electrochimica Acta, 52 (4) (2006) 1788–1791.

    Article  Google Scholar 

  26. S. J. Park, S. Y. Lee, H. K. Boo, H. M. Kim, K. B. Kim, H. C. Kim, Y. J. Song and T. D. Chung, Three-dimensional interstitial nanovoid of nanoparticulate Pt film electroplated from reverse micelle solution, Chemistry of Material, 19 (14) (2007) 3373–3375.

    Article  Google Scholar 

  27. J. Xie, S. Wang, L. Aryasomayajula and V. K. Varadan, Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing, Nanotechnology, 18 (6) (2007) 65503–65512.

    Article  Google Scholar 

  28. H. F. Cui, J. S. Ye, X. Liu, W. D. Zhang and F. S. Sheu, Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation, Nanotechnology, 17 (9) (2006) 2334–2339.

    Article  Google Scholar 

  29. S. Trasatti and O. A. Petrii, Real surface area measurements in electrochemistry, Journal of Electroanalytical Chemistry, 327 (12) (1992) 353–376.

    Article  Google Scholar 

  30. L. J. Bregoli, The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid, Electrochimica Acta, 23 (6) (1978) 489–492.

    Article  Google Scholar 

  31. M. Z. David, M. E. Acree, J. J. Sieth, D. J. Boxrud, G. Dobbins, R. Lynfield, S. Boyle-Vavra and R. S. Daum, Pediatric S. aureus isolate genotypes and infections from the dawn of the CA-MRSA epidemic era in Chicago, 1995-19970, Journal of Clinical Microbiology, 53 (8) (2015) 2486–2491.

    Article  Google Scholar 

  32. N. Goodyear, N. Brouillette, K. Tenaglia, R. Gore and J. Marshall, The effectiveness of three home products in cleaning and disinfection of Staphylococcus aureus and Escherichia coli on home environmental surfaces, Journal of Applied Microbiology, 119 (5) (2015) 1245–1252.

    Article  Google Scholar 

  33. K. P. Neil, G. Biggerstaff, J. K. MacDonald, E. Trees, C. Medus, K. A. Musser, S. G. Stroika, D. Zink and M. J. Sotir, A novel vehicle for transmission of Escherichia coli O157:H7 to humans: Multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough—United States, 2009, Clinical Infectious Diseases, 54 (4) (2012) 511–518.

    Article  Google Scholar 

  34. A. D. Hosny, D. M. Reda, K. R. Abdelmonem and A. H. Osama, Immune response to Vi polysaccharide, heat-killed whole cells, and outer membrane protein of Salmonella typhi, The Journal of Infection in Developing Countries, 9 (6) (2015) 642–649.

    Article  Google Scholar 

  35. A. Kucernak and J. Jiang, Mesoporous platinum as a catalyst for oxygen electroreduction and methanol electrooxidation, Chemical Engineering Journal, 93 (1) (2003) 81–90.

    Article  Google Scholar 

  36. S. J. Park, H. G. Boo, Y. M. Kim, J. H. Han, H. C. Kim and T. D. Chung, pH-sensitive solid-state electrode based on electrodeposited nanoporous platinum, Analytical Chemistry, 77 (23) (2005) 7695–7701.

  37. S. J. Park, T. D. Chung and H. C. Kim, Nonenzymatic glucose detection using mesoporous platinum, Analytical Chemistry, 75 (13) (2003) 3046–3049.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soobyeong Kim.

Additional information

Recommended by Associate Editor Won Gyu Shin

Soobyeong Kim was born in Republic of Korea in 1985. He received the doctoral degree in biomedical engineering from Yonsei University in Korea, in 2014. He works as a Senior Researcher in Korea institute of Industrial Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S. Production of electrolyzed water for home-use based on electrodeposited macroporous platinum. J Mech Sci Technol 31, 1843–1849 (2017). https://doi.org/10.1007/s12206-017-0331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0331-x

Keywords

Navigation