Skip to main content
Log in

Experimental Investigations on Condensation in the Framework of ENhanced COndensers in Microgravity (ENCOM-2) Project

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

We report preliminary results on experimental investigations on condensation in the framework of the European Space Agency funded programme Enhanced Condensers in Microgravity (ENCOM-2) which aims at better understanding underlying phenomena during condensation. The first experiment is a study on condensation of HFE on external curvilinear surface of 15 mm height during reduced gravity experiments. It is found that the local minimum of the film thickness exists at the conjugation area of condensed film and the meniscus at the bottom of the fin; this leads to the local maximum of the heat transfer coefficient, which we also found moves towards the fin tip. The second experiment is a study of falling films hydrodynamics inside a vertical long pipe. In particular, characteristics of wavy falling films produced employing intermittent liquid feed are examined in order to assess wave effects on film condensation. Preliminary results suggest that intermittent feed simply divides the film in two autonomous regions with the wave feature of each one depending only on its flow rate. The processing of registered film thickness data can lead to the estimation of the transverse velocity profile in the film, which is mainly responsible for heat transfer during condensation. The third experiment looks at in-tube convective condensation at low mass fluxes (typical of Loop Heat Pipes and Capillary Pumped Loops) of n-pentane inside a 0.56 mm diameter channel. The results show that the mean heat transfer in the annular zone when it is elongated may be less than the mean heat transfer when it is shorter, due to the interface deformation involved by surface tension effect. When the length of this annular zone reaches a critical value, the interface becomes unstable, and a liquid bridge forms, involving the release of a bubble. The heat transfer due to the phase-change in this isolated bubble zone appears to be very small compared to the sensible heat transfer: the bubbles evolve and collapse in a highly subcooled liquid. The last experiment concerns in-tube condensation of R134a inside a square channel of 1.23 mm hydraulic diameter at mass fluxes of 135 kg m−2 s−1 and 390 kg m−2 s−1 for three different configurations: horizontal, vertical downflow and vertical upflow. For the calculated heat transfer coefficient it is found that gravity has no effect on condensation in downflow configurations at 390 kg m−2 s−1 and in upflow conditions at both values of mass velocity. The effect of gravity on the condensation heat transfer coefficient becomes noteworthy in downflow at mass velocity G = 135 kg m−2 s−1 and vapour quality lower than 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adamek, T.: Bestimmung der Kondensationgrossen auf feingewellten Oberflachen zur Auslegung optimaler Wandprofile. Warme - und Stoffubertragung 15, 255–270 (1981)

    Article  Google Scholar 

  • Aubert, A., Candelier, F., Solliec, C.: Numerical heat transfer analyses of a wavy-laminar falling film using moving curvilinear coordinates. Int. Commun. Heat Mass Transfer 39, 1073–1079 (2012)

    Article  Google Scholar 

  • Bortolin, S., Da Riva, E., Del Col, D.: Condensation in a square minichannel: Application of the VOF method. Heat Transfer Eng. 35(2), 193–203 (2014)

    Article  Google Scholar 

  • Chang, H.C.M., Demekhin, E.A., Kalaidin, E: Simulation of noise driven wave dynamics on a falling film. AIChE J. 42, 1553–1568 (1996)

    Article  Google Scholar 

  • Coleman, J.W., Garimella, S.: Two-phase flow regimes transitions in microchannel tubes: the effect of hydraulic diameter. Proc. ASME Heat Transfer Div. HTD 336–4, 71–83 (2000)

    Google Scholar 

  • Da Riva, E., Del Col, D., Garimella, S. V., Cavallini, A.: The importance of turbulence during condensation in a horizontal circular minichannel. Int. J. Heat Mass Transfer 55, 3470–3481 (2012)

    Article  Google Scholar 

  • Da Riva, E., Del Col, D.: Effect of gravity during condensation of R134a in a circular minichannel. Microgravity Science Technol. 23(suppl 1), 87–97 (2011)

    Article  Google Scholar 

  • Del Col, D., Bortolin, S., Cavallini, A., Matkovic, M.: Effect of cross sectional shape during condensation in a single square minichannel. Int. J. Heat Mass Transfer 54, 3909–3920 (2011)

    Article  MATH  Google Scholar 

  • Del Col, D., Bortolato, M., Azzolin, M., Bortolin, S.: Effect of inclination during condensation inside a square cross section minichannel. Int. J. Heat Mass Transfer 78, 760–777 (2014)

    Article  Google Scholar 

  • El Achkar, G., Lavieille, P., Miscevic, M.: Loop heat pipe and capillary pumped loop design: about heat transfer in the isolated bubbles zone of condensers. Appl. Thermal Eng. 33–34, 253–257 (2012)

    Article  Google Scholar 

  • Faghri, A., Zhang, Y: Transport Phenomena in Multiphase Systems. Academic Press (2006)

  • Fernando, P., Palm, B., Ameel, T., Lundqvist, P., Granryd, E.: A minichannel aluminium tube heat exchanger - Part III: Condenser performance with propane. Int. J. Refrig. 31, 696–708 (2008)

    Article  Google Scholar 

  • Glushchuk, A., Marchuk, I.V., Kabov, O.A.: Experimental study of film condensation of FC-72 Vapour on disk-shaped fin. Microgravity Sci. Technol. 23(Suppl 1), 65–74 (2011)

    Article  Google Scholar 

  • Gregorig, R.: Hautkondensation an feingewellten Oberflächen bei Berüksichtigung der Oberflächenspannungen. Zeitschrift für angewandte Mathematik Physik Bd. 5(1), 36–49 (1954)

    Article  MATH  Google Scholar 

  • Karapantsios, T., Kostoglou, M., Karabelas, A.J.: Local condensation rates of steam/air mixtures in direct contact with a falling liquid film. Int. J. Heat Mass Transfer 38, 779–794 (1995)

    Article  Google Scholar 

  • Kedzierski, M.M., Webb, R.L.: Practical fin shapes for surface tension drained condensation. ASME J. Heat Transfer 112, 479–485 (1990)

    Article  Google Scholar 

  • Kostoglou, M., Samaras, K., Karapantsios, T.D.: Large wave characteristics and their downstream evolution at high Reynolds number falling films. AIChE J 56, 11–23 (2010)

    Google Scholar 

  • Lachassagne, L., Ayel, V., Romestant, C., Bertin, Y.: Experimental study of capillary pumped loop for integrated power in gravity field. Appl. Thermal Eng. 35, 166–176 (2012)

    Article  Google Scholar 

  • Lips, S., Meyer, J. P.: Experimental study of convective condensation in an inclined smooth tube. Part 1: Inclination effect on flow pattern and heat transfer coefficient. Int. J. Heat Mass Transfer 53, 395–404 (2012)

    Article  Google Scholar 

  • Marchuk, I.V., Kabov, O.A.: A problem in the calculus of variations for film condensation on curvilinear fins. J. Eng. Thermophysics 12(3), 199–210 (2003)

    Google Scholar 

  • Mascarenhas, N., Mudawar, I.: Investigation of eddy diffusivity and heat transfer coefficient for free falling liquid films subjected to sensible heating. Int. J. Heat Mass Transfer (In Press)

  • Médéric, B., Miscevic, M., Platel, V., Lavieille, P., Joly, J.L.: Experimental study of flow characteristics during condensation in narrow channels: Influence of diameter channel on structure patterns. Superlattice. Microstruct. 35, 573–586 (2004)

    Article  Google Scholar 

  • Médéric, B., Lavieille, P., Miscevic, M.: Heat transfer analysis according to condensation flow structures in a minichannel. Exp. Therm. Fluid Sci. 30, 785–793 (2006)

    Article  Google Scholar 

  • Miscevic, M., Lavieille, P., Piaud, B.: Numerical study of convective flow with condensation of a pure fluid in capillary regime. Int. J. Heat Mass Transfer 52, 5130–5140 (2009)

    Article  MATH  Google Scholar 

  • Mori, J., Hijikata, K., Hirasawa, S., Nakayama, W.: Optimized performance of condensers with outside condensing surface. ASME J. Heat Transfer 103, 96–102 (1981)

    Article  Google Scholar 

  • Nebuloni, S., Thome, J.R.: Numerical modeling of laminar annular film condensation for different channel shapes. Int. J. Heat Mass Transfer 53(13–14), 2615–2627 (2010)

    Article  MATH  Google Scholar 

  • Nebuloni, S., Thome, J.R.: Film condensation under normal and micro-gravity: Effect of channel shape. Microgravity Sci. Technol. 19(3–4), 125–127 (2007)

    Article  Google Scholar 

  • Patnaik, V., Perez-Blanco, H.: Roll waves in falling films: an approximate treatment of the velocity field. Int. J. Heat Fluid Flow 17, 63–70 (1996)

    Article  Google Scholar 

  • Piaud, B., Lavieille, P., Miscevic, M.: About stability of a vapour jet condensing in a micro channel. International Heat Transfer Conference (IHTC14), paper 22862, Washington, DC, USA (2010)

  • Rifert, V.G., Smirnov, H.F: Condensation Heat Transfer Enhancement. WIT Press (2004)

  • Saffari, H., Naziri, V.: Theoretical modelling and numerical solution of stratified condensation in inclined tubes. J. Mech. Sci. Technol. 24, 2587–2596 (2010)

    Article  Google Scholar 

  • Wang, B. X., Du, X. Z.: Study on laminar film-wise condensation for vapor flow in an inclined small/mini-diameter tube. Int. J. Heat Mass Transfer 43, 1859–1868 (2000)

    Article  MATH  Google Scholar 

  • Wang, H.S., Rose, J.W.: Theory of heat transfer during condensation in microchannels. Int. J. Heat Mass Transfer 54, 2525–2543 (2011)

    Article  MATH  Google Scholar 

  • Wang, H.S., Rose, J.W.: Film condensation in horizontal microchannels: Effect of channel shape. Int. J. Thermal Science 45, 1205–1212 (2006)

    Article  Google Scholar 

  • Webb, R.L.: Principles of Enhanced Heat Transfer. Wiley, New York (1994)

    Google Scholar 

  • Zener, C., Lavi, A.: Drainage systems for condensation. J. Heat Transfer 96, 209–205 (1974)

    Google Scholar 

  • Zhang, W., Xu, J., Liu, G.: Multi-channel effect of condensation flow in a micro triple- channel condenser. Int. J. Multiphase Flow 34, 1175–1184 (2008)

    Article  Google Scholar 

  • Zhu, H.R., Honda, H.: Optimization of fin geometry of a horizontal low finned condenser tube. Heat Transfer—Jpn. Res. 22(4), 372–386 (1993)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the European Space Agency through the MAP Condensation programme (AO-2004-096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Buffone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortolin, S., Achkar, G.E., Kostoglou, M. et al. Experimental Investigations on Condensation in the Framework of ENhanced COndensers in Microgravity (ENCOM-2) Project. Microgravity Sci. Technol. 26, 335–349 (2014). https://doi.org/10.1007/s12217-014-9402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-014-9402-0

Keywords

Navigation