Skip to main content
Log in

Global \(L^q\)-Gevrey Functions and Their Applications

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The goal of this paper is to introduce a class of \(C^\infty \) functions derivatives of which satisfy quantitative size estimates. The estimates, called global \(L^q\) Gevrey estimates, first arose in the work of Boggess and Raich ( J. Fourier Anal. Appl. 19:180–224, 2013) when they investigated how to capture a particular type of exponential decay through estimates on the Fourier transform. In the present work, we refine the notion of global \(L^q\)-Gevrey functions and include a discussion of the function theory as well as the relationship to Gevrey classes and known function spaces. In addition, we present explicit examples of global \(L^q\)-Gevrey functions and ways to generate new global \(L^q\)-Gevrey functions from old ones. We conclude with three applications: The first is solving a Carleman-type problem for constructing functions derivatives of which are a given sequence of global \(L^q\)-Gevrey functions. The other two applications concern extensions of a given global \(L^q\)-Gevrey function: the first is constructing an almost analytic extension, and the second is building an approximate solution to a first-order complex vector field coefficients of which are global \(L^q\)-Gevrey functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adwan, Z., Hoepfner, G.: Denjoy–Carleman classes: boundary values, approximate solutions and applications. J. Geom. Anal. 25(3), 1720–1743 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berndtsson, B.: \(\bar{\partial }\) and Schrödinger operators. Math. Z. 221, 401–413 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Barostichi, R.F., Petronilho, G.: Gevrey micro-regularity for solutions to first order nonlinear PDE. J. Differ. Equ. 247(6), 1899–1914 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boggess, A., Raich, A.: Heat kernels, smoothness estimates and exponential decay. J. Fourier Anal. Appl. 19, 180–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christ, M.: On the \(\bar{\partial }\) equation in weighted \({L}^2\) norms in \({{\mathbb{C}}}^1\). J. Geom. Anal. 1(3), 193–230 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Džanašija, G.A.: Carleman’s problem for functions of the Gevrey class. Sov. Math. Dokl. 3, 969–972 (1962)

    Google Scholar 

  7. Grothendieck, A.: Sur les espaces (\(F\)) et (\(DF\)). Summa Brasil. Math 3, 57–123 (1954)

    MathSciNet  MATH  Google Scholar 

  8. Gel’fand, I.M., Shilov, G.E.: Generalized functions. Vol. 3: Theory of differential equations. Translated from the Russian by Meinhard E. Mayer. Academic Press, New York-London (1967)

  9. Haslinger, F.: Szegö kernels for certain unbounded domains in \({{\mathbb{C}}}^2\). Travaux de la Conférence Internationale d’Analyse Complexe et du 7e Séminaire Roumano-Finlandais (1993) Rev. Roumaine Math. Pures Appl. 39, 939–950 (1994)

  10. Haslinger, F.: Bergman and Hardy spaces on model domains. Ill. J. Math. 42, 458–469 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Halfpap, J., Nagel, A., Wainger, S.: The Bergman and Szegö kernels near points of infinite type. Pac. J. Math. 246(1), 75–128 (2010)

    Article  MATH  Google Scholar 

  12. Komatsu, H.: Projective and injective limits of weakly compact sequences of locally convex spaces. J. Math. Soc. Jpn 19, 366–383 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nagel, A.: Vector fields and nonisotropic metrics. In Beijing Lectures in Harmonic Analysis, Annals of Mathematical Studies, pages 241–306. Princeton University Press, (1986)

  14. Peterson, A.: Estimates for the Szegö projection on uniformly finite-type subdomains of \({\mathbb{C}}^{2}\). submitted. (arXiv:1508.04386)

  15. Raich, A.: Heat equations in \({{\mathbb{R}}}\times {{\mathbb{C}}}\). J. Funct. Anal. 240(1), 1–35 (2006)

    Article  MathSciNet  Google Scholar 

  16. Raich, A.: One-parameter families of operators in \({\mathbb{C}}\). J. Geom. Anal. 16(2), 353–374 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raich, A.: Pointwise estimates of relative fundamental solutions for heat equations in \({{\mathbb{R}}}\times {{\mathbb{C}}}\). Math. Z. 256, 193–220 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Raich, A.: Compactness of the complex green operator on CR-manifolds of hypersurface type. Math. Ann. 348(1), 81–117 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raich, A.: Heat equations and the weighted \({\bar{\partial }}\)-problem. Commun. Pure Appl. Anal. 11(3), 885–909 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Raich, A., Tinker, M.: The Szegö kernel on a class of noncompact CR manifolds of high codimension. Complex Var. Elliptic Equ. 60(10), 1366–1373 (2015). doi:10.1080/17476933.2015.1015531

    Article  MathSciNet  MATH  Google Scholar 

  21. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  22. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics., 2nd edn. McGraw-Hill Inc, New York (1991)

    Google Scholar 

  23. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

Download references

Acknowledgments

The second author was partially supported by FAPESP and CNPq. The third author was partially supported by NSF Grant DMS-1405100. He also gratefully acknowledges the support provided by Erwin Schrödinger Institute during his stay there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Raich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adwan, Z., Hoepfner, G. & Raich, A. Global \(L^q\)-Gevrey Functions and Their Applications. J Geom Anal 27, 1874–1913 (2017). https://doi.org/10.1007/s12220-016-9743-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-016-9743-6

Keywords

Mathematics Subject Classification

Navigation