Skip to main content
Log in

Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We have prepared a series of polypropylene/exfoliated graphene (PP/EG) nanocomposite films via efficient meltcompounding and compression, and investigated their morphology, structures, thermal transition behavior, thermal stability, electrical and mechanical properties as a function of EG content. For the purpose, EG, which is composed of disordered graphene platelets as reinforcing nanoscale fillers, is prepared by the oxidation/exfoliation process of natural graphite flakes. SEM images and X-ray diffraction data confirm that the graphene platelets of EG are well dispersed in PP matrix for the nanocomposites with EG contents less than 1.0 wt%. It is found that thermo-oxidative degradation of PP/EG nanocomposites is noticeably retarded with the increasing of EG content. Electrical resistivity of the nanocomposite films was dramatically changed from ∼1016 to ∼106 Ω·cm by forming electrical percolation threshold at an certain EG content between 1 and 3 wt%. Tensile drawing experiments demonstrate that yielding strength and initial modulus of PP/EG nanocomposite films are highly improved with the increment of EG content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Pasquini, Ed. “Polypropylene Handbook”, 2nd ed, Hanser Gardner Publications, Cincinnati, Ohio, 2005.

    Google Scholar 

  2. E. Manias, Nature Mater., 6, 9 (2007).

    Article  CAS  Google Scholar 

  3. D. W. Schaefer and R. S. Justice, Macromolecules, 40, 8501 (2007).

    Article  CAS  Google Scholar 

  4. E. S. Trofimchuk, E. A. Nesterova, I. B. Meshkov, N. I. Nikonorova, A. M. Muzafarov, and N. P. Bakeev, Macromolecules, 40, 9111 (2007).

    Article  CAS  Google Scholar 

  5. S. Barus, M. Zanetti, M. Lazzari, and L. Costa, Polymer, 50, 2595 (2009).

    Article  CAS  Google Scholar 

  6. J. H. Lee and Y. G. Jeong, J. Appl. Polym. Sci., 115, 1039 (2010).

    Article  CAS  Google Scholar 

  7. E. P. Giannelis, Adv. Mater., 8, 29 (1996).

    Article  CAS  Google Scholar 

  8. A. Okada and A. Usuki, Macromol. Mater. Eng., 291, 1449 (2006).

    Article  CAS  Google Scholar 

  9. D. R. Paul and L. M. Robeson, Polymer, 49, 3187 (2008).

    Article  CAS  Google Scholar 

  10. X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, Mater. Sci. Eng. R, 49, 89 (2005).

    Article  Google Scholar 

  11. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).

    Article  CAS  Google Scholar 

  12. C. McClory, S. J. Chin, and T. McNally, Aust. J. Chem., 62, 762 (2009).

    Article  CAS  Google Scholar 

  13. M. H. Jee, J. S. Lee, J. Y. Lee, Y. G. Jeong, and D. H. Baik, Fiber. Polym., 11, 1 (2010).

    Article  CAS  Google Scholar 

  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).

    Article  CAS  Google Scholar 

  15. Y. Zhang, Y.-W. Tan, H. L. Stomer, and P. Kim, Nature, 438, 201 (2005).

    Article  CAS  Google Scholar 

  16. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008).

    Article  CAS  Google Scholar 

  17. J.-W. Shen, X.-M. Chen, and W.-Y. Huang, J. Appl. Polym. Sci., 88, 1864 (2003).

    Article  CAS  Google Scholar 

  18. V. Causin, C. Marega, A. Marigo, G. Ferrara, and A. Ferraro, Eur. Polym. J., 42, 3153 (2006).

    Article  CAS  Google Scholar 

  19. K. Kalaitzidou, H. Fukushima, and L. T. Drzal, Carbon, 45, 1446 (2007).

    Article  CAS  Google Scholar 

  20. K. Kalaitzidou, H. Fukushima, and L. T. Drzal, Compos. Sci. Technol., 67, 2045 (2007).

    Article  CAS  Google Scholar 

  21. K. Kalaitzidou, H. Fukushima, P. Askeland, and L. T. Drzal, J. Mater. Sci., 43, 2895 (2008).

    Article  CAS  Google Scholar 

  22. K. Wakabayashi, C. Pierre, D. A. Dikin, R. S. Ruoff, T. Ramanathan, L. C. Brinson, and J. M. Torkelson, Macromolecules, 41, 1905 (2008).

    Article  CAS  Google Scholar 

  23. H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prudhomme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).

    Article  CAS  Google Scholar 

  24. M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prudhomme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007).

    Article  CAS  Google Scholar 

  25. L. Staudenmaier, Ber. Dtsch. Bot. Ges., 31, 1481 (1898).

    Article  CAS  Google Scholar 

  26. X. Zhao, Q. Zhang, D. Chen, and P. Lu, Macromolecules, 43, 2357 (2010).

    Article  CAS  Google Scholar 

  27. J. C. Halpin and S. W. Tsai, “Effects of Environmental Factors on Composite Materials”, US Air Force Materials Laboratory, Dayton, Ohio, 1969.

    Google Scholar 

  28. J. C. Halpin and J. L. Kardos, Polym. Eng. Sci., 16, 344 (1976).

    Article  CAS  Google Scholar 

  29. P. K. Mallick, “Fiber-reinforced Composites: Material Manufacturing and Design”, Marcel Dekker Inc., New York, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, JE., Jeon, G.W. & Jeong, Y.G. Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene. Fibers Polym 13, 507–514 (2012). https://doi.org/10.1007/s12221-012-0507-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0507-z

Keywords

Navigation