Skip to main content
Log in

Mesoporous MgAl2O4 and MgTiO3 nanoparticles modified polyacrylonitrile nanofibres for 2-chloroethyl ethyl sulfide degradation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Degradation of 2-chloroethyl ethyl sulfide (2-CEES), a stimulant of sulfur mustard, was investigated on the surface of polyacrylonitrile (PAN) nanofibres embedded with magnesium aluminate and magnesium titanate nanoparticles. The magnesium aluminate and magnesium titanate nanoparticles were prepared by the hydrothermal method and characterized by X-ray diffractometry, scanning electron microscopy and nitrogen adsorption BET. These metal oxide nanoparticles were mixed with PAN solution individually and then electrospun to produce nanofibres. Later, they were studied against the degradation of 2-CEES at room temperature (30±2 °C) using gas-chromatography coupled with flame ionization detector. The degradation and reaction kinetics data reveal that the 2-CEES degraded faster with higher amount of embedded metal oxide nanoparticles in PAN nanofibres. Moreover, the degradation yield of 2-CEES was higher in the case of PAN nanofibres embedded with magnesium aluminate nanoparticles relative to PAN nanofibres embedded with magnesium titanate nanoparticles. Fourier-transform infrared (FTIR) studies showed that the PAN nanofibres embedded with magnesium aluminate and magnesium titanate nanoparticles degrade 2-CEES by the formation of covalent/alkoxide bonds between the surface reactive oxide/hydroxyl group of metal oxide nanoparticles and 2-CEES. The result explores the role of modified PAN nanofibres with magnesium aluminate on the effective degradation of 2-CEES and possesses a suitable candidate for protective application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aas, Prehosp. Dis. Med., 18, 306 (2003).

    Google Scholar 

  2. G. N. Volans and L. Karalliedde, Lancet, 360, s35 (2002).

    Article  Google Scholar 

  3. K. Ganesan, S. K. Raza, and R. Vijayaraghavan, J. Pharm. Bioall. Sci., 2, 166 (2010).

    Article  CAS  Google Scholar 

  4. D. H. Ellison, “Handbook of Chemical and Biological Warfare Agents”, 2nd ed., pp.131–143, CRC press, Baco Raton, New York, 2007.

    Book  Google Scholar 

  5. L. Bromberg, H. Schreuder-Gibson, W. R. Creasy, D. J. McGarvey, R. A. Fry, and T. A. Hatton, Ind. Eng. Chem. Res., 48, 1650 (2009).

    Article  CAS  Google Scholar 

  6. M. P. Shakarjian, D. E. Heck, J. P. Gray, P. J. Sinko, M. K. Gordon, R. P. Casillas, N. D. Heindel, D. R. Gerecke, D. L. Laskin, and J. D. Laskin, Toxicol. Sci., 114, 5 (2010).

    Article  CAS  Google Scholar 

  7. A. Sharma, B. Singh, and A. Saxena, Carbon, 47, 1911 (2009).

    Article  CAS  Google Scholar 

  8. R. Singh, P. K. Gutch, and A. Mazumder, Ind. Eng. Chem. Res., 52, 4689 (2013).

    Article  CAS  Google Scholar 

  9. S. Sundarrajan and S. Ramakrishna, J. Mater. Sci., 42, 8400 (2007).

    Article  CAS  Google Scholar 

  10. R. Ramakrishnan, S. Sundarrajan, Y. Liu, R. S. Barhate, N. L. Lala, and S. Ramakrishna, Nanotechnology, 17, 2947 (2006).

    Article  Google Scholar 

  11. V. Štengl, M. Maríková, S. Bakardjieva, J. Šubrt, F. Opluštil, and M. Olšanská, J. Chem. Technol. Biotechnol., 80, 754 (2005).

    Article  Google Scholar 

  12. G. W. Wagner, O. B. Koper, E. Lucas, S. Decker, and K. J. Klabunde, J. Phys. Chem. B, 104, 5118 (2000).

    Article  CAS  Google Scholar 

  13. G. W. Wagner, P. W. Batram, O. Koper, and K. J. Klabunde, J. Phys. Chem. B, 103, 3225 (1999).

    Article  CAS  Google Scholar 

  14. G. W. Wagner, L. R. Procell, R. J. O’Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, J. Am. Chem. Soc., 123, 1636 (2001).

    Article  CAS  Google Scholar 

  15. Neelam, V. Singh, and T. Gupta, Anal. Chim. Acta, 812, 222 (2014).

    Article  CAS  Google Scholar 

  16. S. Moon, Y. Liu, J. T. Hupp, and O. K. Farha, Angew. Chem., 54, 6795 (2015).

    Article  CAS  Google Scholar 

  17. T. H. Mahato, G. K. Prasad, Beer Singh, A. R. Srivastava, K. Ganesan, J. Acharya, and R. Vijayaraghavan, J. Hazard. Mater., 166, 1545 (2009).

    Article  CAS  Google Scholar 

  18. S. Sundarrajan, A. Venkatesan, and S. Ramakrishna, Macromol. Rapid Commun., 30, 1769 (2009).

    Article  CAS  Google Scholar 

  19. S. Dadvar, H. Tavanai, M. Morshed, and M. Ghiaci, J. Chem. Eng. Data, 57, 1456 (2012).

    Article  CAS  Google Scholar 

  20. F. A. Sheikh, M. A. Kanjwal, S. Saran, W. J. Chung, and H. Kim, Appl. Surf. Sci., 257, 3020 (2011).

    Article  CAS  Google Scholar 

  21. Y. C. Yang, J. A. Baker, and J. R. Ward, Chem. Rev., 92, 1729 (1992).

    Article  CAS  Google Scholar 

  22. A. K. Selvam and G. Nallathambi, Fiber. Polym., 16, 1327 (2015).

    Article  CAS  Google Scholar 

  23. P. Gibson, H. Schreuder-Gibson, and D. Rivin, Colloid Surf. A-Physicochem. Eng. Asp., 187–188, 469 (2001).

    Article  Google Scholar 

  24. P. Gibson, H. Schreuder-Gibson, and D. Rivin, AIChE. J., 45, 190 (1999).

    Article  CAS  Google Scholar 

  25. H. Schreuder-Gibson, P. Gibson, and Y. L. Hsieh, Int. Nonwovens J., 11, 21 (2002).

    CAS  Google Scholar 

  26. A. Singh, Y. Lee, and W. J. Dressick, Adv. Mat., 16, 2112 (2004).

    Article  CAS  Google Scholar 

  27. L. Chen, L. Bromberg, H. Schreuder-Gibson, J. Walker, T. A. Hatton, and G. C. Rutledge, J. Mater. Chem., 19, 2432 (2009).

    Article  CAS  Google Scholar 

  28. D. Han, S. Filocamo, R. Kirby, and A. J. Steckl, ACS Appl. Mater. Interfaces, 3, 4633 (2011).

    Article  CAS  Google Scholar 

  29. J. S. Im, S. J. Park, T. Kim, and Y. S. Lee, Int. J. Hydrogen Energy, 34, 3382 (2009).

    Article  CAS  Google Scholar 

  30. G. Y. Oh, Y. W. Ju, H. R. Jung, and W. J. Lee, J. Anal. Appl. Pyrolysis, 81, 211 (2008).

    Article  CAS  Google Scholar 

  31. C. Tekmen, Y. Tsunekawa, and H. Nakanishi, J. Mater. Process. Technol., 210, 451 (2010).

    Article  CAS  Google Scholar 

  32. B. Sing, T. H. Mahato, A. K. Srivastava, G. K. Prasad, K. Ganesan, R. Vijayaraghavan, and J. Rajeev, J. Hazard. Mater., 190, 1053 (2011).

    Article  Google Scholar 

  33. S. L. Bartelt-Hunt, D. R. U. Knappe, and M. A. Barlaz, Crit. Rev. Environ. Sci. Technol., 38, 112 (2008).

    Article  CAS  Google Scholar 

  34. X. Zhang, Mater. Chem. Phys., 116, 415 (2009).

    Article  CAS  Google Scholar 

  35. J. Guo, H. Lou, H. Zhao, X. Wang, and X. Zheng, Mater. Lett., 58, 1920 (2004).

    Article  CAS  Google Scholar 

  36. C. Pacurariu, I. Lazau, Z. Ecsedi, R. Lazau, P. Barvinschi, and G. Marginean, J. Eur. Ceram. Soc., 27, 707 (2007).

    Article  CAS  Google Scholar 

  37. E. N. Alvar, M. Rezaei, and H. N. Alvar, Powder Technol., 198, 275 (2010).

    Article  CAS  Google Scholar 

  38. Y. M. Miao, Q. L. Zhang, H. Yang, and H. P. Wang, Mater. Sci. Eng. B, 128, 103 (2006).

    Article  CAS  Google Scholar 

  39. A. Troia, M. Pavese, and F. Geobaldo, Ultrason. Sonochem., 16, 136 (2009).

    Article  CAS  Google Scholar 

  40. A. Greiner and J. H. Wendorff, Angew. Chem. Int. Ed., 46, 5670 (2007).

    Article  CAS  Google Scholar 

  41. Y. X. Li, O. Koper, M. Atteya, and K. J. Klabunde, Chem. Mater., 4, 323 (1992).

    Article  CAS  Google Scholar 

  42. E. Lucas, S. Decker, A. Khaleel, A. Seitz, S. Fultz, A. Ponce, W. Li, C. Carnes, and K. J. Klabunde, Chem. Eur. J., 7, 2505 (2001).

    Article  CAS  Google Scholar 

  43. M. E. Martin, R. M. Narske, and K. J. Klabunde, Microporous Mesoporous Mat., 83, 47 (2005).

    Article  CAS  Google Scholar 

  44. R. M. Narske, K. J. Klabunde, and S. Fultz, Langmuir, 18, 4819 (2002).

    Article  CAS  Google Scholar 

  45. O. B. Koper, S. Rajagopalan, S. Winecki, and K. J. Klabunde in “Environmental Applications of Nanomaterials”, 2nd ed. (G. E. Fryxell and G. Cao Eds.), pp.3–24, Imperial College Press, London, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobi Nallathambi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvam, A.K., Nallathambi, G. Mesoporous MgAl2O4 and MgTiO3 nanoparticles modified polyacrylonitrile nanofibres for 2-chloroethyl ethyl sulfide degradation. Fibers Polym 16, 2121–2129 (2015). https://doi.org/10.1007/s12221-015-5429-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5429-0

Keywords

Navigation