Skip to main content
Log in

Changes in Ensembles’ Thermal Insulation According to Garment’s Fit and Length Based on Athletic Figure

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The purpose of this paper is to analyse the impact of design solutions on the thermal insulation of the garments and the ensembles. Previous studies investigated the microclimatic air gaps and volumes, however only under the first - and the second - layered clothing. Since none of the previous studies covered three - layered ensembles, in this study ensembles were accompanied by jackets of different fit and length to investigate the ensembles’ thermal insulation. Variants of bomber jacket differ in the amount of the ease allowance, while variants of the parka differ in length. The thermal insulation of the ensembles increased for 21.6 to 59.7 % when one of the jacket variants was added as the outerwear garment. A threshold volume, after which the thermal insulation will start to decrease due to convection, wasn’t determined for the outerwear third - layered garments nor was the impact of the length of the garment on the thermal insulation clearly stated. This study involved laboratory testing of garments and ensembles by 3D body scanning and thermal manikin measurements. To evaluate the volume of the microclimatic air volume the accurate 3D body scanning was used and the impact of the microclimatic volume on the ensemble’s insulation was tested. The thermal insulation for the selected outerwear garments and afterwards ensembles was measured by resting thermal manikin. Analysis of the results obtained from tests, showed that the garments’ fit and length can be used to model the overall thermal insulation of the ensembles. The ensembles insulation enlargement was measured for microclimatic volumes up to 33.57 dm3 (measured with ensembles accompanied with bomber jacket). The study proved that the limiting microclimatic volume is greater for three - layered clothing, than previously reported. The overall ensembles’ insulation increased simultaneously with the length enlargement (measured with ensembles accompanied with parka jacket). Findings will be of help in the future research on garments and ensembles thermal properties modelled through the design process and the construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Kothari and M. Anbarasan, Indian J. Fibre Text. Res., 5, 49 (1990).

    Google Scholar 

  2. C. A. Wilson, R. M. Laing, and D. J. Carr, J. Hum. Environ. Syst., 5, 69 (2002).

    Article  Google Scholar 

  3. Advances in the Dyeing and Finishing of Technical Textiles, Woodhead Publishing Series in Textiles: No. 138”, 1st ed. (M. L. Gulrajani Ed.), pp.260-262, Woodhead Publising Ltd., Cambridge, 2013.

    Google Scholar 

  4. Y. Lee, K. Hong, and S.-A. Hong, Appl. Ergon, 38, 349 (2013).

    Article  Google Scholar 

  5. Z. Zhang and J. Li, J. Fiber Bioeng Inform., 4, 137 (2011).

    Article  Google Scholar 

  6. Z.-H. Zhang, Y. Wang, and J. Li, Fibres Text. East. Eur., 19, 105 (2011).

    Google Scholar 

  7. J. Kwon and J. Choi, J. Physiol. Anthropol., 32, 11 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. E. A. McCullough, B. W. Jones, and J. Huck, “A Comprehensive Data Base for Estimating Clothing Insulation, Technical Report 84-01”, pp.29–47, Institute for Environmental Research, Kansas State University, Manhattan, 1984.

    Google Scholar 

  9. ISO 9920:2009 Ergonomics of the Thermal Environment-Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble.

  10. G. Havenith, R. Heus, and W. A. Lotens, Ergonomics, 33, 67 (1990).

    Article  Google Scholar 

  11. Y. Taya, S. Ohno, and K. Mihira, J. Home. Econ. Jpn., 33, 374 (1982).

    Google Scholar 

  12. R. P. Clark and M. L. de Calcina-Goff, J. R. Soc. Interface, 6, 767 (2009).

    Article  Google Scholar 

  13. G. Havenith, “Proceedings of 11th International Conference on Environmental Ergonomics”, 2005.

    Google Scholar 

  14. E. Mert, A. Psikuta, and M.-A. Bueno Rossi, Int. J. Biometeorol., 59, 1701 (2015).

    Article  PubMed  Google Scholar 

  15. J. L. Spencer-Smith, Cloth. Res. J., 5, 3 (1977).

    Google Scholar 

  16. I. Holmér, H. Nilsson, G. Havenith, and K. C. Parsons, Ann. Occup. Hyg., 43, 329 (1999).

    Article  PubMed  Google Scholar 

  17. G. Havenith, I. Holmér, E. A. Den Hartog, and K. C. Parsons, Ann. Occup. Hyg., 43, 329 (1999).

    Article  PubMed  Google Scholar 

  18. J. Li, Z. Zhang, and Y. Wang, J. Text I., 104, 1327 (2013).

    Article  CAS  Google Scholar 

  19. E. Mert, S. Böhnisch, A. Psikuta, and M.-A. Bueno, “Proceedings of the 6th International Conference on 3D Body Scanning Technologies”, 2015.

    Google Scholar 

  20. B. A. MacRea, R. M. Laing, and C. A. Wilson, Text. Res. J., 81, 1962 (2011).

    Google Scholar 

  21. H. Daanen, K. Hatcher, and G. Havenith, “Proceedings of the 10th International Conference on Environmental Ergonomics”, 2002.

    Google Scholar 

  22. A. Psikuta, J. Frackiewicz-Kaczmarek, I. Frydrych, and R. M. Rossi, Text. Res. J., 82, 1405 (2012).

    Article  CAS  Google Scholar 

  23. Z. Zhang, J. Li, and Y. Wang, Indian J. Fibre Text. Res., 40, 392 (2015).

    CAS  Google Scholar 

  24. Z.-H. Zhang and J. Li, “TBIS 2010-Textile Bioengineering and Informatics Symposium Proceedings”, 2010.

    Google Scholar 

  25. F. Wang, J. Ergonom., 1, 103 (2011).

    Article  Google Scholar 

  26. ISO 3636:1977 Size Designation of Clothes-Men’s and Boys’ Outerwear Garments.

  27. ISO 8559-2:2017 Size Designation of Clothes-Part 2: Primary and Secondary Dimension Indicators.

  28. BS EN 13402-3:2017 Size Designation of Clothes. Size Labelling Based on Body Measurements and Intervals.

  29. ISO/TR 10652:1991 Standard Sizing Systems for Clothes.

  30. B. Cain, “Thermal Resistance of Some Protective Clothing Ensembles”, Defence Research Establishment, Ottawa, 1991.

    Google Scholar 

  31. ISO 3801:1977 Textiles-Woven fabrics-Determination of Mass Per Unit Length and Mass Per Unit Area.

  32. ISO 5084:1996 Textiles-Determination of thickness of Textiles and Textile Products.

  33. ISO 9237:1995 Textiles-Determination of the Permeability of Fabrics to Air.

  34. ISO 11092:2014 Textiles—Physiological Effects-Measurement of Thermal and Water-vapour Resistance under Steady-state Conditions (sweating guarded-hotplate test).

  35. Z. K. Amirova and O. V. Sakulina, “Izgotovlenie spetsialnoi i sportivnoi odezhdy. Legprombytizdat”, Moskva, 1985.

    Google Scholar 

  36. M. J. Moll and V. Wright, Ann. Rheum. Dis., 31, 1 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. F. Burgo, “Il Modellismo-Tecnica del modello sartoriale alta moda e industriale donna–uomo–bambino/a”, 1st ed., p.251, Istituto di moda Burgo, Milano, 2004.

    Google Scholar 

  38. P. J. Myers-McDevitt, “Complete Guide to Size Specification and Technical Design”, 1st ed., Fairchild Books, New York, 2004.

    Google Scholar 

  39. ISO 20685:2010 3D Scanning Methodologies for Internationally Compatible Anthropometric Databases.

  40. ISO 15831:2004 Clothing-Physiological Effects-Measurement of Thermal Insulation by means of a Thermal Manikin.

  41. Protective Clothing: Managing Thermal Stress, Woodhead Publishing Series in Textiles: No. 154”, 1st ed. (F. Wang and C. Gao Eds.), pp.3-38, Woodhead Publising Ltd., Cambridge, 2014.

    Google Scholar 

  42. BS EN 14058:2004 Protective Clothing - Garment for Protection Against Cool Environments.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Špelić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Špelić, I., Rogale, D., Mihelić Bogdanić, A. et al. Changes in Ensembles’ Thermal Insulation According to Garment’s Fit and Length Based on Athletic Figure. Fibers Polym 19, 1278–1287 (2018). https://doi.org/10.1007/s12221-018-1074-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-1074-8

Keywords

Navigation