Skip to main content
Log in

A Microscopic Cohesive Zone Model and Effects of Interface on the Transverse Mechanical Properties for Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The carbon fiber/epoxy matrix interface plays an important role in the behavior and damage onset of unidirectional fiber reinforced epoxy matrix composites and accurate modeling techniques are needed to study the effects of this complex region on the composite response. In this work, a microscopic cohesive zone model (MCZM) based on atomic potential energy is established for the interface. A multiscale analysis method is proposed for predicting the transverse mechanical properties of unidirectional fiber composites: (1) At the microscale, MCZM is established for the interface; (2) At the mesoscale, a unit cell model is established for the fiber, matrix and interface; and (3) At the macroscale, the homogenization method, failure criteria and damage degradation models are used for predicting the transverse mechanical properties. Subsequently, the transverse mechanical properties and the damage evolution process are simulated with the multiscale analysis method. A comparison between the simulations and experiments shows that: (1) The maximum errors of the predicted transverse modulus and transverse strength are −4.45 % and −1.28 %, respectively; and (2) MCZM can reflect the nonlinearity of epoxy matrix composite materials. Moreover, the effects of the interfacial strength on the macroscopic transverse mechanical properties and the damage onset are analysed. The simulation results show that: (1) The interfacial strength has a more significant effect on the transverse strength and ultimate strain than on the transverse modulus; (2) Decreasing the interfacial strength has a greater effect on the transverse modulus, strength and ultimate strain than increasing the interfacial strength; and (3) The interfacial strength can change the damage onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Weng, W. D. Wen, H. T. Cui, and B. Chen, Acta Astronaut, 147, 133 (2018).

    Article  Google Scholar 

  2. W. Z. Wang, Y. H. Dai, C. Zhang, X. S. Gao, and M. Y. Zhao, Materials, 9, 624 (2016).

    Article  PubMed Central  Google Scholar 

  3. N. Buannic and P. Cartraud, Int. J. Solids Stuct., 38, 7139 (2001).

    Article  Google Scholar 

  4. Q. Qin and Q. Yang, “Macro-Micro-theory on Multifield Coupling Behavior of Heterogeneous Materials”, 1st ed., pp.1–6, Higher Education Press, Beijing, China, 2008.

    Book  Google Scholar 

  5. S. Ghosh and S. N. Mukhopadhyay, Comput. Struct., 41, 245 (1991).

    Article  Google Scholar 

  6. S. Ghosh, K. Lee, and P. Raghavan, Int. J. Solids Stuct., 38, 2335 (2001).

    Article  Google Scholar 

  7. J. Aboudi, Mech. Adv. Mater. Struct., 11, 38 (2004).

    Article  Google Scholar 

  8. C. T. Sun and R. S. Vaidya, Compos. Sci. Technol., 56, 171 (1996).

    Article  CAS  Google Scholar 

  9. Y. L. Chen, Y. Ma, F. Pan, and S. T. Wang, Chinese J. Solid Mech., 39, 1 (2018).

    Google Scholar 

  10. J. Aboudi, Int. J. Solids Struct., 17, 1005 (1981).

    Article  Google Scholar 

  11. M. Paley and J. Aboudi, Mech. Mater., 14, 127 (1992).

    Article  Google Scholar 

  12. H. Li and B. Zhang, Int. J. Plasticity, 65, 22 (2015).

    Article  CAS  Google Scholar 

  13. Z. Xia, F. Ellyin, and Y. Zhang, Int. J. Solids Struct., 40, 1907 (2003).

    Article  Google Scholar 

  14. R. M. Hackett, Int. J. Numer. Meth. Eng., 103, 413 (2015).

    Article  Google Scholar 

  15. A. G. Prodromou, S. V. Lomov, and I. Verpoest, Compos. Struct., 93, 1290 (2011).

    Article  Google Scholar 

  16. Y. D. Sha, G. Y. Ding, J. G. Tian, L. Luo, and X. C. Luan, J. Aerospace Power, 33, 2324 (2018).

    Google Scholar 

  17. G. Alfano and M. A. Crisfield, Int. J. Numer. Meth. Eng., 50, 1701 (2001).

    Article  Google Scholar 

  18. X. P. Xu and A. Needleman, J. Mech. Phys. Solids, 42, 1397 (1994).

    Article  Google Scholar 

  19. X. Wang, J. Zhang, Z. Wang, S. Zhou, and X. Sun, Mater. Des., 32, 3486 (2011).

    Article  CAS  Google Scholar 

  20. G. Han, Z. D. Guan, Z. S. Li, M. Zhang, T. Y. Bian, and S. Y. Du, Appl. Compos. Mater., 22, 289 (2015).

    Article  Google Scholar 

  21. C. C. Pessan, B. Lima, and E. R. Leite, Nanoscale Advances, 1, 937 (2019).

    Article  Google Scholar 

  22. C. M. Hadden, D. R. Klimek-McDonald, E. Pineda, J. King, A. M. Reichanadter, I. Miskioglu, G. Sh, and G. M. Odgard, Carbon, 95, 100 (2015).

    Article  CAS  Google Scholar 

  23. J. P. Johnston, B. Koo, N. Subramanian, and A. Chattopadhyay, Compos. Part B-Eng., 111, 27 (2017).

    Article  CAS  Google Scholar 

  24. A. A. Mousavi, B. Arash, X. Y. Zhuang, and T. Rabczuk, Compos. Part B-Eng., 95, 404 (2016).

    Article  CAS  Google Scholar 

  25. H. Shin, S. Chang, S. Yang, B. D. Youn, and M. Cho, Compos. Part B-Eng., 87, 120 (2016).

    Article  CAS  Google Scholar 

  26. Y. Zhang, F. Xu, C. Zhang, J. Wang, Z. Jia, D. Hui, and Y. Qiu, Compos. Part B-Eng., 99, 358 (2016).

    Article  CAS  Google Scholar 

  27. A. K. Gupta and S. P. Harsha, Compos. Part B-Eng., 95, 172 (2016).

    Article  CAS  Google Scholar 

  28. H. S. Bedi, M. Tiwari, and P. Agnihotri, Carbon, 132, 181 (2018).

    Article  CAS  Google Scholar 

  29. A. Bensoussan and J. Lions, “Asymptotic Analysis for Periodic Structures”, 7th ed., pp.19–23, AMS Chelsea Publishing, Providence, America, 2011.

    Google Scholar 

  30. D. Cioranescu and J. S. Paulin, J. Math. Anal. Appl., 71, 590 (1979).

    Article  Google Scholar 

  31. O. A. Oleinik, Lect. Notes Phys., 195, 248 (1984).

    Article  Google Scholar 

  32. E. Sanchez-Palencia, Lect. Notes Phys., 127, 45 (1980).

    Article  Google Scholar 

  33. O. Oleinik and A. Shamaev, “Mathematical Problems in Elasticity and Homogenization”, 3rd ed., pp.119–261, North Holland., Princeton, America, 2012.

    Google Scholar 

  34. D. Blackketter, D. E. Walrath, T. K. Brien, D. M. Blackketter, D. E. Walrath, and A. C. Hansen, J. Compos. Tech. Res., 15, 136 (1993).

    Article  Google Scholar 

  35. A. Tabiei, G. Song, and Y. Jiang, J. Thermoplast. Compos., 16, 5 (2003).

    Article  Google Scholar 

  36. I. Ivanov and A. Tabiei, Compos. Struct., 54, 489 (2001).

    Article  Google Scholar 

  37. A. Tabiei and I. Ivanov, Int. J. Non Linear Mech., 39, 175 (2004).

    Article  Google Scholar 

  38. R. D. Campilho, M. D. Banea, J. A. Neto, and L. F. Silva, Int. J. Adhes Adhes, 44, 48 (2013).

    Article  CAS  Google Scholar 

  39. A. G. Salvi, A. M. Waas, and A. Caliskan, J. Mater Sci., 43, 5168 (2008).

    Article  CAS  Google Scholar 

  40. Y. Y. Liu and D. Y. Ge, J. Aeronaut. Mater., 18, 56 (1998).

    Google Scholar 

  41. L. A. Girifalco, M. Hodak, and R. S. Lee, Phys. Rev. B, 62, 13104 (2000).

    Article  CAS  Google Scholar 

  42. S. J. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates, Compos. Sci. Technol., 63, 1655 (2003).

    Article  CAS  Google Scholar 

  43. X. F. Wang, Ph. D. Dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, 2007.

  44. B. Zhang, Z. Yang, X. Sun, and Z. Tang, Comp. Mater. Sci., 49, 645 (2010).

    Article  CAS  Google Scholar 

  45. Y. P. Bai, Z. Wang, and L. Q. Feng, Mater. Des., 31, 1613 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowldgments

This work has been supported by the Key Laboratory of Aero-engine Thermal Environment and Structure, Ministry of Industry and Information Technology (NO. XCA1700205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Fang, L., Chen, Z. et al. A Microscopic Cohesive Zone Model and Effects of Interface on the Transverse Mechanical Properties for Composites. Fibers Polym 22, 1352–1365 (2021). https://doi.org/10.1007/s12221-021-0150-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0150-7

Keywords

Navigation