Skip to main content

Advertisement

Log in

Fish Productivity and Trophic Transfer in Created and Naturally Occurring Salt Marsh Habitat

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

High marsh pools are natural features in New England salt marshes that provide important subtidal refuge for the dominant resident fish, Fundulus heteroclitus (mummichog). F. heteroclitus is considered an important component in the trophic transfer pathway for its omnivorous diet and role as a prey species providing connectivity to adjacent near-shore and terrestrial habitats. Pool creation, such as ditch-plugging, is a common component of habitat restoration and enhancement projects throughout the region. Our study combined field experiments measuring fish growth and benthic invertebrates with carbon and nitrogen stable isotopes measurements to test the hypothesis that ditch plug pools have similar trophic structure and levels of productivity as naturally occurring salt marsh pools. Marked fish placed in enclosures were measured for length and weight weekly in natural pools and pools created using ditch plugs. Benthic invertebrates were sieved and sorted from soil cores to characterize invertebrate community structure, and stable isotopes were used to posit diets and trophic pathways associated with each pool type. Growth in fish length was 27 % higher and instantaneous biomass growth 17 % higher in natural pool habitat than in ditch plug habitat. Likewise, invertebrate species richness, biomass, and caloric value were all significantly greater in natural pool habitat than in ditch plugs. Stable isotope mixing models identified distinct resource utilization and trophic structure for natural and created pools. We attribute these differences to flooding and plant loss in response to ditch-plugging, which reduces habitat quality (as measured by resource availability, community structure, and trophic transfer) for fish and invertebrates. Our study increases our understanding of the ecology of salt marsh pools, and the significant results indicate that pools created using ditch plugs do not replicate the structure and function of natural pools at Moody Marsh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aber, J.D., and J.M. Melillo. 2001. Terrestrial ecosystems. San Diego: Harcourt Academic Press.

    Google Scholar 

  • Adamowicz, S.C., and C.T. Roman. 2005. New England salt marsh pools: a quantitative analysis of geomorphic and geographic features. Wetlands 25(2): 279–288.

    Article  Google Scholar 

  • Allen, E.A., P.E. Fell, M.A. Peck, J.A. Gieg, C.R. Guthke, and M.D. Newkirk. 1994. Gut contents of common mummichogs, Fundulus heteroclitus L., in restored and impounded marsh and in natural reference marshes. Estuaries 17(2): 462–471.

    Article  Google Scholar 

  • Bagatini, Y.M., E. Benedito, and J. Higuti. 2010. Effect of the environmental factors on the caloric content of benthic and phytophilous invertebrates in neotropical reservoirs in Parana’ State, Brazil. International Review of Hydrobiology 95: 246–259.

    Article  Google Scholar 

  • Baldwin, A.H., and I.A. Mendelssohn. 1998. Response of two oligohaline marsh communities to lethal and nonlethal disturbance. Oecologia 116: 543–555.

    Article  Google Scholar 

  • Bell, E. 2012. Life at extremes: environments, organisms and strategies for survival. Oxfordshire: CABI Publishers. 576 pp.

  • Bromberg, K., and M.D. Bertness. 2005. Reconstructing New England salt marsh losses using historical maps. Estuaries 28: 823–832.

    Article  Google Scholar 

  • Burdick, D.M., M. Dionne, R.M. Boumans, and F.T. Short. 1997. Ecological responses to tidal restorations of two northern New England salt marshes. Wetlands Ecology and Management 4(2): 129–144.

    Article  Google Scholar 

  • Chapman, D.W. 1978. Production. In Methods for assessment of fish production in freshwaters, ed. T. Begenal, 202–218. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Crain, C., and M.D. Bertness. 2006. Ecosystem engineering across environmental gradients: implications for conservation and management. BioScience 56(3): 211–218.

    Article  Google Scholar 

  • Crustinger, G.M., M.D. Collins, J.A. Fordyce, Z. Gompert, C.C. Nice, and N.J. Sanders. 2006. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313: 966–968.

    Article  Google Scholar 

  • Cummins, K.W. and J.C. Wuycheck. 1971. Caloric equivalents for investigations in ecological energetics. International association of Theoretical and Applied Limnology 18: 1–158.

  • Cunha, I., and M. Planas. 1999. Optimal prey size for early turbot larvae (Scophthalus maximus L.) based on mouth and ingested prey size. Aquaculture 175(1-2): 103–110.

    Article  Google Scholar 

  • Daiber, F.C. 1986. Conservation of tidal marshes. New York: Van Norstrand Reinhold Company.

    Google Scholar 

  • DeNiro, M.J., and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.

    Article  CAS  Google Scholar 

  • DeNiro, M.J., and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–351.

    Article  CAS  Google Scholar 

  • Dibble, K.L., and L.A. Meyerson. 2012. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes. PLoS ONE 7(9), e46161.

    Article  CAS  Google Scholar 

  • Dionne, M., F.T. Short, and D.M. Burdick. 1999. Fish utilization of restored, created, and reference salt-marsh habitat in the Gulf of Maine. American Fisheries Society Symposium 22: 384–404.

    Google Scholar 

  • Eberhardt, A.L., D.M. Burdick, and M. Dionne. 2011. Effects of road culverts on nekton in New England salt marshes: impacts for tidal restoration. Restoration Ecology 19(6): 776–785.

    Article  Google Scholar 

  • Erwin, T.L. 1981. Natural History of Plummers Island, Maryland. XXVI. The Ground Beetles of a Temperate Forest Site (Coleoptera: Carabidae): An Analysis of Fauna in Relation to Size, Habitat Selection, Vagility, Seasonality, and Extinction. Bulletin of the Biological Society of Washington 5: 105–224.

  • Erwin, R.M., D.K. Dawson, D.B. Souts, L.S. McAllister, and P.H. Geissler. 1991. Open marsh water management in the mid-Atlantic region: aerial surveys of waterbird use. Wetlands 11(2): 209–227.

    Article  Google Scholar 

  • Finke, D.L., and R.F. Denno. 2006. Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologia 149(2): 265–275.

    Article  Google Scholar 

  • Fitch, R., T. Theodose, and M. Dionne. 2009. Relationships among upland development, nitrogen, and plant community composition in a Maine salt marsh. Wetlands 29(4): 1179–1188.

    Article  Google Scholar 

  • Fogg, J.D. 1983. Recollections of a salt marsh farmer. Historical Society of Seabrook, NH.

  • Foster, W.A., J.E. Treherne, P.D. Evans, and C.N.E. Ruscoe. 1979. Short-term changes in activity rhythms in an intertidal arthropod (Acarina: Bdella interrupta Evans). Oecologia 38: 291–301.

    Article  Google Scholar 

  • Fry, B. 2006. Stable isotope ecology. New York: Springer Science, Business Media, LLC.

    Book  Google Scholar 

  • Graham, N.L., and J.G. Stofolano. 1983. Oviposition behavior of the salt marsh greenhead, Tabanus simulans (Diptera: Tabanidae). Annals of the Entomological Society of America 76(4): 703–706.

    Article  Google Scholar 

  • Griffiths, D. 1977. Caloric variation in crustacean and other animals. Journal of Animal Ecology 46: 593–605.

    Article  Google Scholar 

  • Haas, L.H., C.J. Freeman, J.M. Logan, L. Deegan, and E.F. Gaines. 2009. Examining mummichog growth and movement: are some individuals making intra-season migrations to optimize growth? Journal of Experimental Marine Ecology 369: 8–16.

    Article  Google Scholar 

  • Hacker, S.D., and M.D. Bertness. 1996. Trophic consequences of a positive plant interaction. American Naturalist 148: 559–575.

    Article  Google Scholar 

  • Herbst, D.B. 2001. Gradients of salinity stress, environmental stability, and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia 466: 209–219.

    Article  CAS  Google Scholar 

  • Hodek, I., A. Honek, Helmut F. van Emden. 2012. Ecology and behavior of the ladybird beetles (Coccinellidae). Chichester: Wiley Publishers. 500 pp.

  • Hopkinson, C.S., and J.P. Schubauer. 1984. Static and dynamic aspects of nitrogen cycling in the salt marsh graminoid Spartina alterniflora. Ecology 65(3): 961–969.

    Article  Google Scholar 

  • Hunter, K.L., M.G. Fox, and K.W. Able. 2009. Influence of flood frequency, temperature and population density on migration of Fundulus heteroclitus in semi-isolated marsh pond habitats. Marine Ecology Progress Series 391: 85–96.

    Article  Google Scholar 

  • Int Panis, L., B. Goddeeris, and R. Verheyen. 1996. On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae (Diptera). Hydrobiologia 318: 61–67.

    Article  Google Scholar 

  • James-Pirri, M.J., K.B. Raposa, and J.G. Catena. 2001. Diet composition of mummichogs, Fundulus heteroclitus, from restoring and unrestricted regions of a New England (U.S.A.) salt marsh. Estuarine, Coastal and Shelf Science 53: 205–213.

    Article  Google Scholar 

  • James-Pirri, M.J., R.M. Erwin, and D.J. Prosser. 2005. US Fish and Wildlife Service (Region 5) salt marsh study year 4 report (2001 to 2004). US Fish and Wildlife Service, Region 5, Newington, New Hampshire: US Fish and Wildlife Service, US Geological Survey, and University of Rhode Island.

  • Kaplan, W., I. Valiela, and J.M. Teal. 1979. Denitrification in a salt marsh ecosystem. Limnology and Oceanography 24(4): 726–734.

    Article  CAS  Google Scholar 

  • Kirkpatrick, J., and K. Foreman. 1998. Dissolved inorganic nitrogen flux and mineralization in Waquoit Bay soils as measured by core incubations. Biological Bulletin 195: 240–241.

    Article  CAS  Google Scholar 

  • Kneib, R.T. 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology: An Annual Review 35: 163–220.

    Google Scholar 

  • Kneib, R.T., and R.L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation. Marine Ecology Progress Series 107: 227–238.

    Article  Google Scholar 

  • Koch, F., and C.J. Gobler. 2009. The effects of tidal export from salt marsh ditches on estuarine water quality and plankton communities. Estuaries and Coasts 32: 261–275.

    Article  CAS  Google Scholar 

  • Koch, M.S., I.A. Mendelssohn, and K.L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35(2): 399–408.

    Article  CAS  Google Scholar 

  • Lenihan, H.S., and F. Micheli. 2001. Soft-soil communities. In Marine community ecology, ed. M.D. Bertness, S.D. Gaines, and M.E. Hay. Sunderland, Massachusetts: Sinauer Associates, Inc.

    Google Scholar 

  • Logan, J., H. Haas, L. Deegan, and E. Gaines. 2006. Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecologia 147: 391–395.

    Article  Google Scholar 

  • Long, W.C., and R.D. Seitz. 2008. Trophic interactions under stress: hypoxia enhances foraging in an estuarine food web. Marine Ecology Progress Series 362: 59–68.

    Article  Google Scholar 

  • Luxton, M. 1967. The ecology of saltmarsh Acarina. Journal of Animal Ecology 36(2): 257–277.

    Article  Google Scholar 

  • MacKenzie, R.A. 2005. Spatial and temporal patterns in insect emergence from a southern Maine salt marsh. American Midland Naturalist 153: 257–269.

    Article  Google Scholar 

  • MacKenzie, R.A., and M. Dionne. 2008. Habitat heterogeneity: importance of salt marsh pools and high marsh surfaces to fish production in two Gulf of Maine salt marshes. Marine Ecology Progress Series 368: 217–230.

    Article  Google Scholar 

  • McClelland, J.W., and I. Valiela. 1997. Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal waters. Limnology and Oceanogr 45(5): 930–937.

    Article  Google Scholar 

  • McMahon, K.W., B.J. Johnson, and W.G. Ambrose Jr. 2005. Diet and movement of the Killifish, Fundulus heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses. Estuaries 28(6): 966–973.

    Article  Google Scholar 

  • Menge, B.A., and A.M. Olson. 1990. Role of scale and environmental factors in regulation of community structure. Trends in Ecology and Evolution 5(2): 52–57.

    Article  CAS  Google Scholar 

  • Meredith, W.H., D.E. Saveikis, and C.J. Stachecki. 1985. Guidelines for “open marsh water management” in Delaware’s salt marshes – objectives, system designs, and installation procedures. Wetlands 5: 119–133.

    Article  Google Scholar 

  • Merrit, R.W., and K.W. Cummins. 1996. An introduction to the aquatic insects of North America, 3rd ed. Dubuque: Kendall/Hunt.

    Google Scholar 

  • Mitsch, W.J., and J.G. Gosselink. 2000. Wetlands. New York: Wiley.

    Google Scholar 

  • Moore, J.W., and X.S. Semmens. 2008. Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters 11(5): 470–480.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83(10): 2869–2877.

    Article  Google Scholar 

  • Munsell Color. 2000. Munsell soil color charts. New Windsor: GretagMacbeth.

    Google Scholar 

  • Murphy, B.R., and D.W. Willis. 1996. Fisheries techniques, 2nd ed. Bethesda: American Fisheries Society.

    Google Scholar 

  • Newell, S.Y and D. Porter. 2000. Microbial secondary production from salt marsh-grass shoots, and its known and potential fates. In, Concepts and Controversies in Tidal Marsh Ecology, eds. Michael P. Weinstein and Daniel A. Kreeger. Kluwer Academic Publishers. 159-184.

  • Nixon, S.W., and C.A. Oviatt. 1973. Ecology of a New England salt marsh. Ecological Monographs 43(4): 463–498.

    Article  Google Scholar 

  • Palmer, A., and S. Filoso. 2009. Restoration of ecosystem services for environmental markets. Science 325: 575–576.

    Article  CAS  Google Scholar 

  • Pasquaud, S., J. Lobry, and P. Elie. 2007. Facing the necessity of describing estuarine ecosystems: a review of food web ecology study techniques. Hydrobiologia 588: 159–172.

    Article  Google Scholar 

  • Peterson, B.J., R.W. Howarth, and R.H. Garrett. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227(4692): 1361–1363.

  • Portnoy, J.W., and A.E. Giblin. 1997. Biogeochemical effects of seawater restoration to diked salt marshes. Ecological Applications 7(3): 1054–1063.

    Article  Google Scholar 

  • Rader, D.N. 1984. Salt-marsh benthic invertebrates: small-scale patterns of distribution and abundance. Estuaries 7(4A): 413–420.

    Article  Google Scholar 

  • Rakocinski, C.F., D.M. Baltz, and J.W. Fleeger. 1992. Correspondence between environmental gradients and the community structure of marsh-edge fishes in a Louisiana estuary. Marine Ecology Progress Series 80: 135–148.

    Article  Google Scholar 

  • Rätz, H.-J., and J. Lloret. 2003. Variation in fish condition between Atlantic cod (Gadus morhaua) stocks, the effect on their productivity and management implications. Fisheries Research 60: 369–380.

    Article  Google Scholar 

  • Rietsma, C.S., I. Valiela, and R. Buchsbaum. 1988. Detrital chemistry, growth and food choice in the saltmarsh snail (Melampus bidentatus). Ecology 69: 261–266.

    Article  Google Scholar 

  • Rochlin, I., M.J. James-Pirri, S.C. Adamowicz, R.J. Wolfe, P. Capotosto, M.E. Dempsey, T. Iwanejko, and D.V. Ninivaggi. 2012. Integrated Marsh Management (IMM): a new perspective on mosquito control and best management practices for salt marsh restoration. Wetlands Ecology and Management. doi:10.1007/s11273-012-9251-9.

    Google Scholar 

  • SAS Institute. 2010. JMP 9 statistical software. Cary: SAS Institute.

    Google Scholar 

  • Seliskar, D.M., J.L. Gallagher, D.M. Burdick, and L.A. Mutz. 2002. The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study. Journal of Ecology 90: 1–11.

    Article  Google Scholar 

  • Semmens, B.X., and J.W. Moore. 2008. MixSIR: A Bayesian stable isotope mixing model, Version 1.0. http://www.ecologybox.org. Date of download September 2009.

  • Silliman, B.R., E.D. Grosholz, and M.D. Bertness. 2009. Human impacts on salt marshes: a global perspective. Berkeley: University of California Press.

    Google Scholar 

  • Smith, K.J., and K.W. Able. 1994. Salt-marsh tide pools as winter refuges for the mummichog, Fundulus heteroclitus, in New Jersey. Estuaries 17(1B): 226–234.

    Article  CAS  Google Scholar 

  • Sterner, R.W., J.J. Elser, E.J. Fee, S.J. Guilford, and T.H. Chrzanowski. 1997. The light: nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. The American Naturalist 150(6): 663–684.

    Article  CAS  Google Scholar 

  • Strong, D.R. 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73: 747–754.

    Article  Google Scholar 

  • Taylor, J. 1998. Guidance for Meeting U.S. Fish and Wildlife Service trust resource needs when conducting coastal marsh management for mosquito control on Region 5 national wildlife refuges. Newington: U.S. Fish and Wildlife Service Region 5, Great Bay National Wildlife Refuge. 20 pp.

  • Thebault, E., and M. Loreau. 2003. Food-web constraints on biodiversity-ecosystem functioning relationships. Proceedings of the National Academy of Science 100(25): 14949–14954.

    Article  CAS  Google Scholar 

  • Thompson, L.S., and S. Scheu. 1984. Comparison of diets of the tidal marsh snail, Melampus bidentatus and the amphipod. Orchestia grillus. The Nautilus 98: 44–53.

    Google Scholar 

  • Thompson, R.M., and C.R. Townsend. 2005. Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos 108: 137–148.

    Article  Google Scholar 

  • Tobias, C.R., M. Cieri, B.J. Peterson, L.A. Deegan, J. Vallino, and J. Hughes. 2003. Processing watershed-derived nitrogen in a well-flushed New England estuary. Limnology and Oceanography 48(5): 1766–1778.

    Article  CAS  Google Scholar 

  • Tyler, A.V. 1973. Caloric values of some North Atlantic invertebrates. Marine Biology 19: 258–261.

    Article  Google Scholar 

  • Vandenberg, N.J. 1990. First North American records for Harmonia Quadripunctata (Pontopiddian) (Coleoptera: Coccinellidea); a lady beetle native to the Palearctic. Proceedings of the Entomological Society of Washington 92(3): 407–410.

    Google Scholar 

  • Vander Zaden, M.J., G. Cabana, and J.B. Rasmussen. 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N ) and literature dietary data. Canadian Journal of Fish and Aquaculture Science 54: 1142–1158.

    Article  Google Scholar 

  • Vincent, R.E., D.M. Burdick, and M. Dionne. 2013. Ditching and ditch-plugging in New England salt marshes: effects on hydrology, elevation, and soil characteristics. Estuaries and Coasts 36: 610–625.

    Article  CAS  Google Scholar 

  • Vincent, R.E., D.M. Burdick, and M. Dionne. 2014. Ditching and ditch-plugging in New England salt marshes: effects on vegetation and self-maintenance. Estuaries and Coasts 37(2): 354–368.

    Article  Google Scholar 

  • Wacasey, J.W., and E.G. Atkinson. 1987. Energy values of marine benthic invertebrates from the Canadian Arctic. Marine Ecology Progress Series 39: 243–250.

    Article  Google Scholar 

  • Waggy, G.L., M.S. Peterson, and B.H. Comyns. 2007. Feeding habits and mouth morphology of young silver perch (Bairiella chrysoara) from the north-central Gulf of Mexico. Southeastern Naturalist 6(4): 743–751.

    Article  Google Scholar 

  • Weinstein, M.P., and S.Y. Litvin. 2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes: a stable isotope approach. Transactions of the American Fisheries Society 129: 797–810.

    Article  Google Scholar 

  • Wetzel, R.G., and G.E. Likens. 1991. Limnological analyses, 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Whitcraft, C.R., and L.A. Levin. 2007. Regulation of benthic algal and animal communities by salt marsh plants: impacts of shading. Ecology 88(4): 904–917.

    Article  Google Scholar 

  • Wigand, C., P. Brennan, M. Stolt, M. Holt, and S. Ryba. 2009. Soil respiration rates in coastal marshes subject to increasing watershed nitrogen loads in southern New England, USA. Wetlands 29(3): 952–963.

    Article  Google Scholar 

  • Wilson, K.R., J.T. Kelley, A. Croitoru, M. Dionne, D.F. Belknap, and R. Steneck. 2009. Stratigraphic and ecophysical characterizations of salt marsh pools: dynamic landforms of the Webhannet salt marsh, Wells, ME, USA. Estuaries and Coasts 32: 855–870.

    Article  Google Scholar 

  • Wolfe, R.J. 1996. Effects of open marsh water management on selected tidal marsh resources: a review. Journal of the American Mosquito Control Association 12: 701–712.

    CAS  Google Scholar 

  • Wozniak, A.S., C.T. Roman, S.C. Wainright, R.A. McKinney, and M.J. James-Pirri. 2006. Monitoring food web changes in tide-restricted salt marshes: a carbon stable isotope approach. Estuaries and Coasts 29(4): 568–578.

    Article  Google Scholar 

  • Wu, Y.T., C.H. Wang, X.D. Zhang, B. Zhao, L.F. Jiang, J.K. Chen, and B. Li. 2009. Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets. Biological Invasions 11: 635–649.

    Article  Google Scholar 

  • YSI Corporation. 2006. YSI 85 Multimeeter. OH: Yellow Springs.

Download references

Acknowledgments

We would like to thank Beth Lambert at the New Hampshire Coastal Program for assistance with data collection and equipment. Additional thanks go to Andy Ouimette at the University of New Hampshire (UNH) Stable Isotope Lab, Alyson Eberhardt at the UNH Jackson Estuarine Lab, and staff at the Wells National Estuarine Research Reserve. We thank Fred Short and Tom Lee of UNH, associate editor Richard MacKenzie, and two anonymous reviewers for their comments that improved this manuscript. This work was funded by the NOAA/National Estuarine Research Reserve System, Graduate Research Fellowship Program. The US Fish and Wildlife Service provided a special use permit for work at Moody Marsh. This work is dedicated to our co-author, Michele Dionne, a talented scientist, mentor, colleague, and friend who contributed greatly to estuarine research and conservation. Jackson Estuarine Laboratory Contribution #524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Vincent.

Additional information

Communicated by Iris C. Anderson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, R.E., Dionne, M., Burdick, D.M. et al. Fish Productivity and Trophic Transfer in Created and Naturally Occurring Salt Marsh Habitat. Estuaries and Coasts 38, 1233–1250 (2015). https://doi.org/10.1007/s12237-015-9969-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-9969-8

Keywords

Navigation