Skip to main content
Log in

On unequal error protection for LZSS compressed data

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

An unequal error protection scheme for Lempel–Ziv–Storer–Szymanski (LZSS) compressed data is proposed. The novel method divides the compressed data into short blocks, which allows for near-real-time operation. The error protection is obtained through the application of BCH codes and block interleavers. Compared to other methods found in the literature, the proposed scheme is either more efficiency in terms of compression efficient or in terms of decoding delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Details on the implementation of the LZSS encoding and decoding methods can be found in [8].

  2. The encoding and decoding of Reed–Solomon codes is described in detail in [16].

References

  1. Bell TC, Cleary JG, Witten IH (1990) Text compression. Prentice Hall, Englewood Cliffs

    Google Scholar 

  2. Ng WK, Ravishankar CV (1997) Block-oriented compression techniques for large statistical databases. IEEE Trans Knowl and Data Eng 9(2):314–328

    Article  Google Scholar 

  3. Chiang SW, Po LM (1997) Adaptive lossy LZW algorithm for palettised image compression. IEE Electron Lett 33(10):852–854

    Article  Google Scholar 

  4. Greene D, Vishwanath M, Yao F, Zhang T (1997) A progressive Ziv–Lempel algorithm for image compression. In: Proceedings of compression and complexity of sequences

  5. Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 23:337–343

    Article  MATH  MathSciNet  Google Scholar 

  6. Storer JA, Syzmanski TG (1982) Data compression via textual substituion. J ACM 29:928–951

    Article  MATH  Google Scholar 

  7. Ziv J, Lempel A (1978) Compression of individual sequences via variable-rate coding. IEEE Trans Inf Theory 24:530–536

    Article  MATH  MathSciNet  Google Scholar 

  8. Sayood K (2000) Introducion to data compression. Morgan Kaufmann, San Mateo

    Google Scholar 

  9. Bell T (1986) Better OPM/L text compression. IEEE Trans Commun 34(12):1176–1182

    Article  Google Scholar 

  10. Fujiwara E (2006) Code design for dependable systems: theory and practical applications. Wiley, New York

    Book  MATH  Google Scholar 

  11. de Almeida C, Palazzo Jr R (1996) Efficient two-dimensional interleaving technique by use of the set partitioning concept. IEE Electron Lett 32(6):538–540

    Article  Google Scholar 

  12. Coene W, Pozidis H, Van Dijk M, Kahlman J, Van Woudenberg R, Stek B (2001) Channel coding and signal processing for optical recording systems beyond DVD. IEEE Trans Magn 37(2):682–688

    Article  Google Scholar 

  13. Biglieri E, Proakis J, Shamai S (1998) Fading channels: information-theoretic and communications aspects. IEEE Trans Inf Theory 44(6):2619–2692

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhu W, Garcia-Frias J (2004) Stochastic context-free grammars and hidden Markov models for modeling of bursty channels. IEEE Trans Veh Technol 53(3):666–676

    Article  Google Scholar 

  15. MacWilliams FJ, Sloane NJA (1977) The theory of error-correcting codes. North-Holland, Amsterdam

    MATH  Google Scholar 

  16. Lin S, Costello Jr DJ (2004) Error control coding. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  17. Masnick B, Wolf J (1967) On linear unequal error protection codes. IEEE Trans Inf Theory 13(4):600–607

    Article  MATH  Google Scholar 

  18. Fujiwara E, Kitakami M (2003) Unequal error protection in Ziv–Lempel coding. IEICE Trans Inf Syst E86-D(12):2595–2600

    Google Scholar 

  19. Kitakami M, Nakamura S (2005) Burst error recovery for Huffman coding. IEICE Trans Inf Syst E88-D(9):2197–2200

    Article  Google Scholar 

  20. Kitakami M, Kawasaki T (2004) Error recovery method for LZSS coding. In: Proceedings of international symposium on theory and its applications, Parma, pp 1158–1163

  21. Pereira ZC, Pellenz ME, Souza RD, Siqueira MAA (2007) Unequal error protection for LZSS compressed data using Reed–Solomon codes. IET Commun 1(4):612–617

    Article  Google Scholar 

  22. Arnold R, Bell T (1997) A corpus for the evaluation of lossless compression algorithms. In: Proceedings os IEEE data compression conference, pp 201–210

  23. Perkins S, Smith DH (2005) Robust data compression: variable length codes and burst errors. Comput J 48(3):315–322

    Article  Google Scholar 

  24. Perkins S, Smith DH, Ryley A (2004) Robust data compression: consistency checking in the synchronization of variable length codes. Comput J 47(3):309–319

    Article  Google Scholar 

  25. Maniezzo D, Cesana M, Bergamo P, Gerla M, Yao K (2003) Real-time caption streaming over WiFi network. In: Proceedings IEEE international conference on information technology: research and education

  26. Zhao Y, Zhang X, Hu R-S, Xue J, Li X, Che L, Hu R, Schopp L (2006) An automatic captioning system for telemedicine. In: Proceedings IEEE international conference on acoustics, speech and signal processing

  27. Wu Y, Lonardi S, Szpankowski W (2006) Error-resilient LZW data compression. In: Proceedings of the data compresson conference

  28. Lonardi S, Szpankowski W, Ward MD (2007) Error resilient LZ’77 data compression: algorithms, analysis, and experiments. IEEE Trans Inf Theory 53(5)

  29. Okuda T, Tanaka E, Kasai T (1976) A method for correction of grabled words based on the Levenshtein metric. IEEE Trans Comput C-25:172–176

    Article  MathSciNet  Google Scholar 

  30. Bauer R, Hagenauer J (2001) On variable length codes for iterative source/channel decoding. In: Proceedings of IEEE data compression conference

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Demo Souza.

Additional information

This work was partially supported by CNPq (Brazil) under grants 472977/2007-5 and 303181/2007-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, R.D., Pellenz, M.E. & Pereira, Z.C. On unequal error protection for LZSS compressed data. Ann. Telecommun. 65, 285–292 (2010). https://doi.org/10.1007/s12243-009-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-009-0136-8

Keywords

Navigation