Skip to main content
Log in

Experimental evaluation of a R-EAM and noise impact analysis for UWB and Wi-Fi transmission in RoF networks

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

The performance of a reflective electro-absorption modulator transceiver is assessed in terms of both slope efficiency (SE) and responsivity in a radio-over-fiber network. Different biasing schemes are analyzed, specifically zero bias (passive solution), bias for maximum SE, and bias for maximum responsivity. Finally, two case studies on multiband orthogonal frequency division multiplexing ultra-wide band and Wi-Fi are presented, for which the optimum setup parameters are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mitchell J (2004) Performance of OFDM at 5.8 GHz using radio over fibre link. IEEE Electron Lett 40(21):1353–1354

    Article  Google Scholar 

  2. Tang PK, Ong LC, Alphones A, Luo B, Fujise M (2004) PER and EVM measurements of a radio-over-fiber network for cellular and WLAN system applications. IEEE J Lightwave Technol 22(11):2370–2376

    Article  Google Scholar 

  3. Gomes N, Morant M, Alphones A, Cabon B, Mitchell J, Lethien C, Csörnyei M, Stöhr A, Iezekiel S (2009) Radio-over-fiber transport for the support of wireless broadband services [invited]. J Opt Netw 8(2):156–178

    Article  Google Scholar 

  4. Jazayerifar M, Cabon B, Salehi J (2008) Transmission of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber. IEEE J Lightwave Technol 26(15):2594–2603

    Article  Google Scholar 

  5. Sauer M, Kobyakov A, George J (2007) Radio over fiber for picocellular network architectures. IEEE J Lightwave Technol 25(11):3301–3320

    Article  Google Scholar 

  6. Lim C, Nirmalathas A, Bakaul M, Gamage P, Lee K, Yang Y, Novak D, Waterhouse R (2010) Fiber-wireless networks and subsystem technologies. IEEE J Lightwave Technol 28(4):390–405

    Article  Google Scholar 

  7. Jia Z, Yu J, Chang G (2006) A full-duplex radio-over-fiber system based on optical carrier suppression and reuse. IEEE Photonics Technol Lett 18(16):1726–1728

    Article  Google Scholar 

  8. Chen L, Wen H, Wen S (2006) A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection. IEEE Photonics Technol Lett 18(19):2056–2058

    Article  Google Scholar 

  9. Cox C (2004) Analog optical links: theory and practice. Cambridge University Press

  10. Wake D, Johansson D, Moodie D (1997) Passive picocell: a new concept in wireless network infrastructure. IEEE Electron Lett 33(5):404–406

    Article  Google Scholar 

  11. Stohr A, Kitayama K, Jager D (1999) Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector. IEEE Trans Microwave Theor Tech 47(7):1338–1341

    Article  Google Scholar 

  12. Kitayama K (2000) Architectural considerations of fiber-radio millimeter-wave wireless access systems. Fiber Integr Opt 19(2):167–186

    Article  MathSciNet  Google Scholar 

  13. Keiser G (2000) Optical fiber communications. Wiley, USA

    Google Scholar 

  14. PHY H, Standard M (2005) ECMA international ECMA-368

  15. Chen Y, Zhang J, Jayalath A (2006) Multiband-ofdm uwb vs ieee802. 11n: system level design considerations. IEEE Veh Technol Conf 4:1972–1976

    Google Scholar 

  16. Oliveira J, Silva S, Pessoa L, Coelho D, Salgado H, Castro J (2010) UWB radio over perfluorinated GI-POF for low-cost in-building networks. In: IEEE Topical Meeting on Microwave Photonics, pp 317–320

  17. IEEE (2009) IEEE Standard for Information technology–telecommunications and information exchange between systems–local and metropolitan area networks–specific requirements part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 5: enhancements for higher throughput. IEEE Std 802.11n-2009, pp c1–502, 29

  18. Corporation WN (2009) Product specifications of DNMA-92. An IEEE 802.11n a/b/g/n Mini-PCI module, version 1.6

Download references

Acknowledgements

We acknowledge funding from FCT and program POCTI/FEDER under the National Plan for Scientific Hardware Renewal with grant REEQ/1272/EEI/2005.

This work was supported in part by FCT under the project “Design and Optimisation of WDM Millimetre-Wave Fibre-Radio Systems” (PTDC/EEA-TEL/68974/2006) and EC Framework 7 (FP7) project DAPHNE (www.fp7daphne.eu) “Developing aircraft photonic networks” (grant ACP8-GA - 2009-233709). D. V. Coelho also acknowledges support from FCT through a PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. B. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pessoa, L.M., Oliveira, J.M.B., Coelho, D.V. et al. Experimental evaluation of a R-EAM and noise impact analysis for UWB and Wi-Fi transmission in RoF networks. Ann. Telecommun. 68, 63–72 (2013). https://doi.org/10.1007/s12243-012-0312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-012-0312-0

Keywords

Navigation