Skip to main content
Log in

Biological control of tortricidae in tea fields in Japan using insect viruses and parasitoids

  • Published:
Virologica Sinica

Abstract

Tea is a perennial and evergreen plant. Cultivated tea trees provide a habitat for insect pests and their natural enemies. In Japan, granuloviruses (GVs) have successfully controlled two of the most important pests of tea, Adoxophyes honmai and Homona magnanima (Tortricidae: Lepidoptera). The GVs are produced in vivo and a single application sustains pesticidal efficacy throughout a year, which encompasses 4 to 5 discrete generations of both species. A. honmai and H. magnanima also have various natural enemies, especially hymenopteran parasitoids. Such resident natural enemies also play a role in reducing the pest density in virus-controlled fields, but the effect of virus infection on parasitoids sharing the same host larva has not been well studied. Survival of one of the major parasitoids of A. honmai, Ascogaster reticulata (Braconidae: Hymenoptera), is reduced by virus infection of the host. Viruses, including GV and entomopoxvirus (EPV), and certain koinobiont endoparasitoids, including A. reticulata, are both known to regulate host endocrinology. However, the GV and EPV have distinct host regulation mechanisms, and consequently have different impacts on the survival of A. retuculata, when A. reticulata parasitizes a host that is infected with either GV or EPV. These additional effects on host regulation displayed by both viruses and parasitoids affect the outcome of virus-parasitoid interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abot A R, Moscardi F, Fuxa J R,et al. 1996. Development of resistance by Anticarsia gemmatalis from Brazil and the United States to a nuclear polyhedrosis virus under laboratory selection pressure. Biol Control, 7: 126–130.

    Article  Google Scholar 

  2. Asser-Kaiser S, Fritsch E, Undorf-Spahn K,et al. 2007. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science, 317: 1916–1918

    Article  PubMed  CAS  Google Scholar 

  3. Barbosa P. 1998. Conservation Biological Control. London: Academic Press p396.

    Google Scholar 

  4. Berling M, Blachere-Lopez C, Soubabere O,et al. 2009. Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Appl Environ Microbiol, 275: 925–930.

    Article  Google Scholar 

  5. Black B C, Brennan L A, Dierks P M,et al. 1997. Commercialization of Baculoviral Insecticides, In: Baculovirus (Miller L K,ed), New York: Plenum Press, p341–387.

    Google Scholar 

  6. Briese D T, Mende H A. 1983. Selection for increased resistance to a granulosis virus in the potato moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Bull Entomol Res, 73: 1–9.

    Article  Google Scholar 

  7. Brooks W M. 1993. Host-parasitoid-pathogen interactions. In: Parasites and Pathogens of Insects (Beckage N E, Thompson S N, Federici B A, ed), San Diego: Academic Press, CA. p231–272.

    Google Scholar 

  8. Eberle K E, Asser-Kaiser S, Sayed S M, et al. 2008. Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-I12. J Invertebr Pathol., 98: 293–298.

    Article  PubMed  CAS  Google Scholar 

  9. Edward J P, Weaver R J, Marris G C. 2001. Endocrine changes in lepidopteran larvae: potential challenges to parasitoid development and survival. In: Endocrine interactions of insect parasites and pathogens (Edwards J P; Weaver R J, ed), Oxford: BIOS Scientific Publishers Ltd. p1–32.

    Google Scholar 

  10. FAOSTAT, 2008. http://faostat.fao.org/

  11. Huber J. 1998. Western Europe, In: Insect Viruses and Pest Management, (Hunter-Fujita, F R, Entwistle P F, Evans H F,et al. ed.), West Sussex: John Wiley & Sons, Inc., p201–215.

    Google Scholar 

  12. Ishii T, Takatsuka J, Nakai M,et al. 2002. A comparative study of the growth characteristics and competitive abilities of a nucleopolyhedrovirus and an entomopoxvirus in larvae of the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Biol Control, 23: 96–105.

    Article  Google Scholar 

  13. Kawai A. 1997. Prospect for integrated pest management in tea cultivation in Japan. JARQ, 31: 213–217.

    Google Scholar 

  14. Kirkpatrick B A, Washburn J O, Volkman L E. 1998. AcMNPV pathogenesis and developmental resistance in fifth instar Heliothis virescens. J Invertebr Pathol, 72: 63–72

    Article  PubMed  CAS  Google Scholar 

  15. Kodomari S. 1987. Control of leafrollers with granulosis viruses in tea field. 1. Effectiveness of application of GV mixture of oriental tea tortrix and smaller tea tortrix. Bull Shizuoka Tea Exp Stn, 13: 39–48.

    Google Scholar 

  16. Kodomari S. 1991. Pest and disease of tea and its control. Science of tea (Cha no kagaku): Asakura publishing Co., Ltd, p42–51. (in Japanese).

  17. Kosugi Y. 1999. Decline in the susceptibility of smaller tea totrix, Adoxophyes honmai to some insecticides in Shimada city, Shizuoka Prefecture. Ann Rept Kanto Pl Prot Soc, 46: 123–126. (in Japanese).

    Google Scholar 

  18. Kouzaki Y. 1998. Current status and problems of control of tea leafrollers in Kagoshima using granulovirus. Sanshi konchu kenkyu shiryo, 23: 86–92. (in Japanese).

    Google Scholar 

  19. Landis D L, Swatten S D, Gurr G M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol, 45: 175–201.

    Article  PubMed  CAS  Google Scholar 

  20. Lawrence P O, Lanzrein B. 1993. Hormonal interactions between insect endoparaites and their host insects. In: Parasites and Pathogens of Insects (Beckage N E. Thompson S N. Federici B A, ed), San Diego: Academic Press, CA. p59–86.

    Google Scholar 

  21. Maeda-Yamamoto M, Ema K, Shibuichi I. 2007. In vitro and in vivo anti-allergic effects of ‘benifuuki’ green tea containing O-methylated catechin and ginger extract enhancement. Cytotechnology, 55: 135–142.

    Article  PubMed  CAS  Google Scholar 

  22. Minamikawa J, Osakabe M. 1979. Insect Pests of Tea Plant. Tokyo: Japan Plant Protection Association. p322. (in Japanese).

    Google Scholar 

  23. Nakai M, Takeda M, Kunimi Y. 1997. Seasonal changes in prevalence of viral disease and parasitism by parasitic insects in a larval population of the smaller tea tortrix, Adoxophyes sp. (Lepidoptera: Tortricidae) in a tea field. Appl Entomol Zool, 32: 609–615.

    Google Scholar 

  24. Nakai M, Shiotsuki T, Kunimi Y. 2004. An entomopoxvirus and a granulovirus use different mechanisms to prevent pupation of Adoxophyes honmai. Virus Research, 101: 185–191.

    Article  PubMed  CAS  Google Scholar 

  25. Nakai M, Shiotsuki T, Kunimi Y. 2005. An entomopoxvirus and a granulovirus have different impacts on Adoxophyes honmai (Tortricidae: Lepidoptera) simultaneously parasitized by Ascogaster reticulatus (Braconidae: Hymenptera). Biol Control, 33: 230–237.

    Article  Google Scholar 

  26. Nakamura T. 2003. Control of leafrollers in tea fields using “Hamaki tenteki”. http://www.agrofrontier.com/guide/f_105. html

  27. Nishi Y, Nonaka T. 1996. Biological control of the tea tortrix, using granulosis virus in the tea field. Agrochem Jpn, 69: 7–10.

    Google Scholar 

  28. Nonaka T, Onimaru T. 1988. Control of smaller tea tortirx, Adoxophyes sp. and tea tortrix, Homona magnanima DIAKONOFF by granulosis virus. 1. Decrease of virus susceptibility revealed in mass-production insects. Proc Assoc Pl Prot Kyushu, 34: 201–204. (in Japanese).

    Google Scholar 

  29. Okuno S, Nakai M, Hiraoka T,et al. 2002. Isolation of a protein lethal to the endoparasitoid Cotesia kariyai from entomopoxvirus-infected larvae of Mythimna separata. Insect Biochem Molec Biol, 32: 559–566.

    Article  CAS  Google Scholar 

  30. O’Reilly D R, Miller L K. 1989. A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. Science, 245: 1110–1112.

    Article  PubMed  Google Scholar 

  31. Ozaki S, Takeshima S. 1984. Decline in the susceptibility of Homona magnanima to methomyl and its chemical control in the middle part of Shizuoka Prefecture. Ann Rept Kanto Pl Prot Soc, 31: 171–172. (in Japanese).

    Google Scholar 

  32. Palli S R, Ladd T R, Tomkins W L,et al. 2000. Choristoneura fumiferana entomopoxvirus prevents metamorphosis and modulates juvenile hormone and ecdysteroid titers. Insect Biochem Mol Biol, 30: 869–876.

    Article  PubMed  CAS  Google Scholar 

  33. Shiga M, Yamada H, Oho N,et al. 1973. A granulosis virus, possible biological agent for control of Adoxophyes orana (Lepidotera: Tortricidae) in apple orchards. J Invertebr Pathol, 21: 149–157.

    Article  Google Scholar 

  34. Shirai M, Kobayashi H, Ito H.et al. 1988. Decline in the susceptibility of Homona magnanima Diaknoff to methomyl in Shizuoka Prefecture. Ann Rept Kanto Pl Prot Soc, 35: 189–190. (in Japanese).

    Google Scholar 

  35. Tabata J, Noguchi H, Kainoh Y,et al. 2007. Sex pheromone production and perception in the mating disruption-resistant strain of the smaller tea leafroller moth, Adoxophyes honmai. Entomol Exp Appl, 122: 145–153.

    Article  CAS  Google Scholar 

  36. Takagi K, 1974. Monitoring of hymenopterous parasite in tea field. Bull Nat Res Ins Tea, 10: 91–131. (In Japanese with English summary).

    Google Scholar 

  37. Takahashi M, Nakai M, Nakanishi K,et al. 2008. Genetic and biological comparisons of four nucleopolyhedrovirus isolates that are infectious to Adoxophyes honmai (Lepidoptera: Tortricidae). Biol Control, 46: 542–546.

    Article  Google Scholar 

  38. Takeshima S, Kurebayashi, N. 1982. An increase in leafroller density in tea fields and a decline in the susceptibility to methomyl in Hatsukura, Shizuoka Prefecture. Ann Rept Kanto Pl Prot Soc, 29: 161. (in Japanese).

    Google Scholar 

  39. Teakle R E, Jensen J M, Giles J E. 1986. Age-related susceptibility of Heliothis punctiger to a commercial formulation of nuclear polyhedrosis virus. J Invertebr Pathol, 47: 82–92.

    Article  Google Scholar 

  40. Uchidoi T, Mori Y, Asahina K. 1994. Decline in the susceptibility of oriental tea tortrix to benzoyl phenyl urea insecticides in Shizuoka Prefecture. Ann Rept Kanto Pl Prot Soc, 41: 261–263. (in Japanese).

    Google Scholar 

  41. Waage J. 1989. The population ecology of pest-pesticidenatural enemy interactions, In: Pesticides and non-target invertebrates (Jepson P C. ed), Wimporne, Dorset: Intercept Ltd, p81–93.

    Google Scholar 

  42. Weiss S, Vaughn J L. 1986. Cell culture methods for large-scale propagation of baculoviruses. In: The biology of baculoviruses: Practical application for insect control (Granados R R, Federici B A, ed), Vol 2, Boca Raton: CRC Press, Florida. p63–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madoka Nakai.

Additional information

Foundation item: This work was partially supported by Grantin-Aid for Scientific Research (B) (18380038).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakai, M. Biological control of tortricidae in tea fields in Japan using insect viruses and parasitoids. Virol. Sin. 24, 323–332 (2009). https://doi.org/10.1007/s12250-009-3057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-009-3057-9

CLC number

Key words

Navigation