Skip to main content

Advertisement

Log in

Review: Ewing Sarcoma Predisposition

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Ewing sarcoma is a rare tumor developed in bone and soft tissues of children and teenagers. This entity is biologically led by a chromosomal translocation, typically including EWS and FLI1 genes. Little is known about Ewing sarcoma predisposition, although the role of environmental factors, ethnicity and certain polymorphisms on Ewing sarcoma susceptibility has been studied during the last few years. Its prevalence among cancer predisposition syndromes has also been thoroughly examined. This review summarizes the available evidence on predisposing factors involved in Ewing sarcoma susceptibility. On the basis of these data, an integrated approach of the most influential factors on Ewing sarcoma predisposition is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ES:

Ewing sarcoma

CNV:

Copy number variations

CPS:

Cancer predisposing syndromes

MSC:

Mesenchymal Stem Cell

AACR:

American Association of Cancer Research

LFS:

Li-Fraumeni Syndrome

WGS:

whole genome sequencing

WES:

Whole exome sequencing

NGS:

Next generation sequencing

RB1 :

RB transcriptional corepressor 1

BLM :

Bloom Syndrome RecQ Like Helicase gene; Bloom syndrome gene

RET :

RET Proto-Oncogene

GENESIS:

Genetics of Ewing Sarcoma International study

References

  1. Horowitz M, Malawer M, Woo S, et al. Ewing's Sarcoma Family of Tumors: Ewing's Sarcoma of Bone and Soft Tissue and the Peripheral Primitive Neuroectodermal Tumors. Pizzo, PA.; Poplack, DG., editors. Principles and Practice of Pediatric Oncology. Philadelphia: Lippincott-Raven Publishers; 1997. p. 831–863

  2. Young IL, Percy CL, Asire AI (1981) Surveillance, epidemiology, and end results: incidence and mortality data, 1973-1977. Nat I Cancer Inst Monogr 57:149

    Google Scholar 

  3. Worch J, Cyrus J, Goldsby R, Matthay KK, Neuhaus J, DuBois SG (2011) Racial differences in the incidence of mesenchymal tumors associated with EWSR1 translocation. Cancer Epidemiol Biomark Prev 20(3):449–453

    CAS  Google Scholar 

  4. Nakata K, Ito Y, Magadi W, Bonaventure A, Stiller CA, Katanoda K et al (2018) Childhood cancer incidence and survival in Japan and England: a population-based study (1993-2010). Cancer Sci 109(2):422–434

    CAS  PubMed  Google Scholar 

  5. Polednak AP (1985) Primary bone cancer incidence in black and white residents of New York State. Cancer (Phila) 55:2883–2888

    CAS  Google Scholar 

  6. Glass AG, Fraumeni JF (1970) Epidemiology of bone cancer in children. J Natl Cancer Inst 44(1):187–199

    CAS  PubMed  Google Scholar 

  7. Fraumeni JF, Glass AG (1970) Rarity of Ewing’s sarcoma among U.S. Negro children. Lancet 1:366–367

    PubMed  Google Scholar 

  8. Jensen RD, Drake RM (1970) Rarity of Ewing’s tumour in negroes. Lancet. 1:777

    CAS  PubMed  Google Scholar 

  9. Linden G, Dunn IE (1970) Ewing’s sarcoma in negroes. Lancet 1:1171

    CAS  PubMed  Google Scholar 

  10. Eddington GM, Bohrer SP, Middlemass IH (1970) Ewing’s sarcoma in negroes. Lancet. 1:1171–1172

    Google Scholar 

  11. Oyemade GA, Abioye AA (1982) Primary malignant tumors of bone: incidence in Ibadan, Nigeria. I NatI Med Assoc 74:65–68

    CAS  Google Scholar 

  12. Kramer S, Meadows AT, Jarrett P, Evans AE (1983) Incidence of childhood cancer: experience of a decade in a population-based registry. I NatI Cancer Inst 10:49–55

    Google Scholar 

  13. Li FP, Tu JT, Liu FS, Shiang EL (1980) Rarity of Ewing’s sarcoma in China. Lancet. 1:1255

    CAS  PubMed  Google Scholar 

  14. Savita S, Stephen L (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet. 204(7):351–365

    Google Scholar 

  15. Hancock JD, Lessnick SL (2008) A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7:250–256

    CAS  PubMed  Google Scholar 

  16. Sankar S, Bell R, Stephens B, Zhuo R, Sharma S, Bearss DJ et al (2013) Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. Oncogene. 32:5089–5100

    CAS  PubMed  Google Scholar 

  17. Lessnick SL, Ladanyi M (2012) Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol 7:145–159

    CAS  PubMed  Google Scholar 

  18. Takigami I, Ohno T, Kitade Y, Hara A, Nagano A, Kawai G et al (2011) Synthetic siRNA targeting the breakpoint of EWS/Fli-1 inhibits growth of Ewing sarcoma xenografts in a mouse model. Int J Cancer 128:216–226

    CAS  PubMed  Google Scholar 

  19. Maksimenko A, Malvy C (2005) Oncogene-targeted antisense oligonucleotides for the treatment of Ewing sarcoma. Expert OpinTher Targets 9:825–830

    CAS  Google Scholar 

  20. Mateo-Lozano S, Gokhale PC, Soldatenkov VA, Dritschilo A, Tirado OM, Notario V (2006) Combined transcriptional and translational targeting of EWS/FLI-1 in Ewing's sarcoma. Clin Cancer Res 12:6781–6790

    CAS  PubMed  Google Scholar 

  21. Stoll G, Surdez D, Tirode F, Laud K, Barillot E, Zinovyev A et al (2013) Systems biology of Ewing sarcoma: a network model of EWS-FLI1 effect on proliferation and apoptosis. Nucleic Acids Res 41(19):8853–8871

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Riggi N, Knoechel B, Shawn M, Rheinbay E, Boulay G, Suvà M et al (2014) EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26(5):668–681

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bilke S, Schwentner R, Yang F, Kauer M, Jug G, Walker RL et al (2013) Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer. Genome Res 23:1797–1809

    PubMed  PubMed Central  Google Scholar 

  24. Gangwal K, Close D, Enriquez CA, Hill CP, Lessnick SL (2010) Emergent properties of EWS/FLI regulation via GGAA microsatellites in Ewing's sarcoma. Genes Cancer 1:177–187

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA et al (2008) Microsatellites as EWS/FLI response elements in Ewing's sarcoma. Proc Natl Acad Sci U S A 105:10149–10154

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Guillon N, Tirode F, Boeva V, Zynovyev A, Barillot E, Delattre O (2009) The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS One 4:e4932

    PubMed  PubMed Central  Google Scholar 

  27. Patel M, Simon JM, Iglesia MD, Wu SB, McFadden AW, Lieb JD, Davis IJ (2012) Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res 22:259–270

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts P, Burchill SA, Brownhill S, Cullinane CJ, Johnston C, Griffiths MJ et al (2008) Ploidy and karyotype complexity are powerful prognostic indicators in the Ewingʼs sarcoma family of tumors: a study by the United Kingdom cancer cytogenetics and the childrenʼs cancer and leukaemia group. Genes Chromosomes Cancer 47:207–220

    CAS  PubMed  Google Scholar 

  29. Mackintosh C, Ordonez JL, Garcia-Dominguez DJ, Sevillano V, Llombart-Bosch A, Szuhai K et al (2012) 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene. 31:1287–1298

    CAS  PubMed  Google Scholar 

  30. Hattinger CM, Pötschger U, Tarkkanen M, Squire J, Zielenska M, Kiuru-Kuhlefelt S et al (2002) Prognostic impact of chromosomal aberrations in Ewing tumours. Br J Cancer 86:1763–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 466:869–873

    CAS  PubMed  Google Scholar 

  32. Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S et al (2014) The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 10(7):e1004475

    PubMed  PubMed Central  Google Scholar 

  33. Winn DM, Li FP, Robison LL, Mulvihill JJ, Daigle AE, Fraumeni JF (1992) A case-control study of the etiology of Ewing's sarcoma. Cancer Epidemiol Biomark Prev 1(7):525–532

    CAS  Google Scholar 

  34. Abbott D, Randall RL, Schiffman J, Lessnick S, Cannon-Albright LA. A population-based survey of excess cancers observed in Ewing's sarcoma and in their first-, second-, and third-degree relatives. Cancer Res. 2015; 75(15 Suppl): Abstract nr 2748. https://doi.org/10.1158/1538-7445

  35. Riggi N, Cironi L, Provero P, Suva ML, Kaloulis K et al (2005) Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 65:11459–11468

    CAS  PubMed  Google Scholar 

  36. Riggi N, Suva ML, De Vito C, Provero P, Stehle JC et al (2010) EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell eprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 24:916–932

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P et al (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11:421–429

    CAS  PubMed  Google Scholar 

  38. Toomey EC, Schiffman JD, Lessnick SL (2010) Recent advances in the molecular pathogenesis of Ewing’s sarcoma. Oncogene. 29:4504–4516

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Von Levetzow C, Jiang X, Gwye Y, von Levetzow G, Hung L et al (2011) Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One 6:e19305

    Google Scholar 

  40. Ross KA, Smyth NA, Murawski Kennedy JG (2013) The biology of Ewing sarcoma. ISRN Oncol 759725

  41. Amaral AT, Manara MC, Berghuis D, Ordóñez JL, Biscuola M, Lopez-García MA et al (2014) Characterization of human Mesenchymal stem cells from Ewing sarcoma patients. Pathogenetic Implications. Plos One 9:e85814

    PubMed  PubMed Central  Google Scholar 

  42. Johnson JJ, Chen W, Hudson W, Yao Q, Taylor M et al (2003) Prenatal and postnatal myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia. Blood. 101:3229–3235

    CAS  PubMed  Google Scholar 

  43. Kovar H, Amatruda J, Brunet E, Burdach S, Cidre-Aranaz F, de Alava E et al (2016) The second European interdisciplinary Ewing sarcoma research summit--a joint effort to deconstructing the multiple layers of a complex disease. Oncotarget. 7(8):8613–8624

    PubMed  PubMed Central  Google Scholar 

  44. Brodeur GM, Nichols KE, Plon SE, Schiffman JD, Malkin D (2017) Pediatric Cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res 23:1–5

    Google Scholar 

  45. Greer MC, Voss SD, States LJ (2017) Pediatric Cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res 23:6–13

    Google Scholar 

  46. Porter CC et al (2017) Recommendations for surveillance for children with leukemia-predisposing conditions. Clin Cancer Res 23:14–22

    Google Scholar 

  47. Walsh MF et al (2017) Recommendations for childhood Cancer screening and surveillance in DNA repair disorders. Clin Cancer Res 23:23–31

    Google Scholar 

  48. Tabori U et al (2017) Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res 23:32–37

    Google Scholar 

  49. Evans DGR et al (2017a) Cancer and central nervous system tumor surveillance in pediatric Neurofibromatosis 1. Clin Cancer Res 23:46–53

    Google Scholar 

  50. Evans DGR et al (2017b) Cancer and central nervous system tumor surveillance in pediatric Neurofibromatosis 2 and related disorders. Clin Cancer Res 23:54–61

    Google Scholar 

  51. Foulkes WD et al (2017) Cancer surveillance in Gorlin syndrome and Rhabdoid tumor predisposition syndrome. Clin Cancer Res 23:62–67

    Google Scholar 

  52. Rednam SP et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/Paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:68–75

    Google Scholar 

  53. Schultz KAP et al (2017) PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:76–82

    Google Scholar 

  54. Villani A et al (2017) Recommendations for Cancer surveillance in individuals with RASopathies and other rare genetic conditions with increased Cancer risk. Clin Cancer Res 23:83–90

    Google Scholar 

  55. Druker H et al (2017) Genetic counselor recommendations for Cancer predisposition evaluation and surveillance in the pediatric oncology patient. Clin Cancer Res 23:91–97

    Google Scholar 

  56. Kamihara J et al (2017) Retinoblastoma and Neuroblastoma Predisposition and Surveillance. Clin Cancer Res 23:98–106

    Google Scholar 

  57. Achatz MI et al (2017) Cancer screening recommendations and clinical Management of Inherited Gastrointestinal Cancer Syndromes in childhood. Clin Cancer Res 23:107–114

    Google Scholar 

  58. Kalish JM et al (2017) Surveillance recommendations for children with overgrowth syndromes and predisposition to Wilms tumors and Hepatoblastoma. Clin Cancer Res 23:115–122

    Google Scholar 

  59. Wasserman JD et al (2017) Multiple endocrine Neoplasia and Hyperparathyroid-jaw tumor syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:123–132

    Google Scholar 

  60. Etzold A, Schröder JC, Bartsch O, Zechner U, Galetzka D (2015) Further evidence for pathogenicity of the TP53 tetramerization domain mutation p.Arg342Pro in Li- Fraumeni syndrome. Fam Cancer. 14(1):161–165

    CAS  PubMed  Google Scholar 

  61. Macedo GS, Araujo Vieira I, Brandalize AP, Giacomazzi J, Inez Palmero E, Volc S (2016) Rare germline variant (rs78378222) in the TP53 3' UTR: evidence for a new mechanism of cancer predisposition in Li-Fraumeni syndrome. Cancer Genet 209(3):97–106

    CAS  PubMed  Google Scholar 

  62. Calvete O, Martinez P, Garcia-Pavia P, Benitez-Buelga C, Paumard-Hernández B, Fernandez V et al (2015) A mutation in the POT1 gene is responsable for cardiac angiosarcoma in TP53-negative Li–Fraumeni-like families. Nat Commun 6:8383

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Calvete O, Garcia-Pavia P, Domínguez F, Bougeard G, Kunze K, Braeuninger A et al (2017) The wide spectrum of POT1 gene variants correlates with multiple cancer types. Eur J Hum Genet 25(11):1278–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Siddiqui R, Onel K, Facio F, Nafa K, Diaz LR, Kauff N (2005) The TP53 mutational spectrum and frequency of CHEK2*1100delC in Li-Fraumeni-like kindreds. Familial Cancer 4(2):177–181

    CAS  PubMed  Google Scholar 

  65. Varley J (2003) TP53, hChk2, and the Li-Fraumeni syndrome. Methods Mol Biol 222:117–129

    CAS  PubMed  Google Scholar 

  66. Vahteristo P, Tamminen A, Karvinen P, Eerola H, Eklund C, Altonen LA et al (2001) p53, CHK2, and CHK1 Genes in Finnish Families with Li-Fraumeni Syndrome: Further Evidence of CHK2 in Inherited Cancer Predisposition. Cancer Res 61(15):5718–5722

    CAS  PubMed  Google Scholar 

  67. Manoukian S, Peissel B, Frigerio S, Lecis D, Bartkova J (2011) RoversiG, et al. two new CHEK2 germline variants detected in breast cancer/sarcoma families negative for BRCA1, BRCA2, and TP53 gene mutations. Breast Cancer Res Treat 130(1):207–215

    CAS  PubMed  Google Scholar 

  68. Ruijs MW, Broeks A, Menko FH, Ausems MG, Wagner A, Oldenburg R et al (2009) The contribution of CHEK2 to the TP53-negative Li-Fraumeni phenotype. Hered Cancer Clin Pract 7(1):4

    PubMed  PubMed Central  Google Scholar 

  69. Li FP, Fraumeni JF Jr (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71(4):747–752

    CAS  PubMed  Google Scholar 

  70. Mai PL, Best AF, Peters JA, De Castro RM, Khincha PP, Loud JT et al (2016) Risks of first and subsequent cancers among TP53 mutation-carriers in the NCI LFS cohort. Cancer. 122(23):3673–3681

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Birch JM, Alston RD, McNally RJ, Evans DG, Kelsey AM, Harris M et al (2001) Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene. 20(34):4621–4628

    CAS  PubMed  Google Scholar 

  72. Mody RJ, Wu YM, Lonigro RJ, Cao X, Roychowdhury S, Vats P et al (2015) Integrative clinical sequencing in themanagement of refractory or relapsed cancer in youth. JAMA 314:913–925

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Harris MH, DuBois SG, Glade Bender JL, Kim A, Crompton BD, Parker E et al (2016) Multicenter feasibility study oftumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the individualized Cancer therapy (iCat) study. JAMA Oncol 2:608–615

    PubMed  Google Scholar 

  74. Oberg JA, Glade Bender JL, Sulis ML, Pendrick D, Sireci AN, Hsiao SJ et al (2016) Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med 8:133

    PubMed  PubMed Central  Google Scholar 

  75. Parsons DW, Roy A, Yang Y, Wang T, Scollon S, Bergstrom K et al (2016) Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2:616–624

    PubMed  PubMed Central  Google Scholar 

  76. Worst BC, van Tilburg CM, Balasubramanian GP, Fiesel P, Witt R, Freitag A et al (2016) Next-generation personalised medicine for high-risk paediatric cancer patients – the INFORM pilot study. Eur J Cancer 65:91–101

    PubMed  Google Scholar 

  77. Harttrampf AC, Lacroix L, Deloger M, Deschamps F, Puget S, Auger N et al (2017) MOlecular screening for CancerTreatment optimization (MOSCATO-01) in pediatric patients: a single institutional prospective molecular stratification trial. Clin Cancer Res 23:6101–6112

    CAS  PubMed  Google Scholar 

  78. Chang W, Brohl AS, Patidara R, Sindiria S, Shern JF, Wei JS et al (2016) Multi-dimensional Omics for precision therapy of children and adolescent Young adults with relapsed and refractory Cancer: report from pediatric oncology branch. NCI Clin Cancer Res 22(15):3810–3820

    Google Scholar 

  79. Pincez T, Clément N, Lapouble E, Pierron G, Kamal M, Bieche I et al (2017) Feasibility and clinical integration of molecular profiling for target identification in pediatric solid tumors. Pediatr Blood Cancer 64:e26365

    Google Scholar 

  80. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J et al (2015) Germline mutations in predisposition genes in pediatric Cancer. N Engl J Med 373(24):2336–2346

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brohl AS, Patidar R, Turner CE, Wen X, Song YK, Wei JS (2017) Frequent inactivating germline mutations in DNA repair genes in patients with Ewing sarcoma Germline mutations in Ewing sarcoma. Genet Med 19(8):955–958

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lerman D, Monument M, McIlvaine E, Liu X, Huang D, Monovich L et al (2015) TumoralTP53 and/or CDKN2A alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: a report from the Children’s oncology group. Pediatr Blood Cancer 62(5):759–765

    CAS  PubMed  Google Scholar 

  83. Id Said B, Kim H, Tran J, Novokmet A, Malkin D (2016) Super-transactivation TP53 variant in the Germline of a family with Li-Fraumeni syndrome. Hum Mutat 37(9):889–892

    CAS  PubMed  Google Scholar 

  84. Marcel V, Palmero EI, Falagan-Lotsch P, Martel-Planche G, Ashton-Prolla P, Olivier M (2009) TP53 PIN3 and MDM2 SNP309 polymorphisms as genetic modifiers in the Li-Fraumeni syndrome: impact on age at first diagnosis. J Med Genet 46(11):766–772

    CAS  PubMed  Google Scholar 

  85. Sagne C, Marcel V, Bota M, Martel-Planche G, Nobrega A, Palmero EI et al (2014) Age at cancer onset in germline TP53 mutation carriers: association with polymorphisms in predicted G-quadruplex structures. Carcinogenesis. 35(4):807–815

    CAS  PubMed  Google Scholar 

  86. Bougeard G, Baert-Desurmont S, Tournier I, Vasseur S, Martin C, Brugieres L (2006) Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 43(6):531–533

    CAS  PubMed  Google Scholar 

  87. Ponti F, Corsini S, Gnoli M, Pedrini E, Mordenti M, Sangiorgi L (2016) Evaluation of TP53 Pro72Arg and MDM2 SNP 285-SNP309 polymorphisms in an Italian cohort of LFS suggestive patients lacking identifiable TP53 germline mutations. Familial Cancer 15(4):635–643

    CAS  PubMed  Google Scholar 

  88. Wu CC, Krahe R, Lozano G, Zhang B, Wilson CD, Jo EJ et al (2011) Joint effects of germ-line p53 mutation, MDM2 SNP309, and gender on Cancer risk in family studies of Li-Fraumeni syndrome. Hum Genet 129(6):663–673

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ruijs MW, Schmidt MK, Nevanlinna H, Tommiska J, Aittomäki K, Pruntel R (2007) The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes. Eur J HumGenet 15(1):110–114

    CAS  Google Scholar 

  90. Macedo GS, Vieira IA, Vianna FSL, Alemar B, Giacomazzi J, Brandalize APC et al (2018) P53 signaling pathway polymorphisms, cancer risk and tumor phenotype in TP53 R337H mutation carriers. Familial Cancer 17(2):269–274

    CAS  PubMed  Google Scholar 

  91. Renaux-Petel M, Sesboüé R, Baert-Desurmont S, Vasseur S, Fourneaux S, Bessenay E, et al. The MDM2 285G–309G haplotype is associated with an earlier age of tumour onset in patients with Li-Fraumeni syndrome. Fam Cancer. 2014; (1):127–30

  92. Thurow HS, Hartwig FP, Alho CS, Silva DS, Roesler R, Abujamra AL et al (2013) Wing sarcoma: influence of TP53 Arg72Pro and MDM2 T309G SNPs. Mol Biol Rep 40(8):4929–4934

    CAS  PubMed  Google Scholar 

  93. Kleinerman RA, Tucker MA, Abramson DH, Seddon JM, Tarone RE, Fraumeni JF Jr (2007) Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst 99(1):24–31

    PubMed  Google Scholar 

  94. MacCarthy A, Bayne AM, Brownbill PA, Bunch KJ, Diggens NL, Draper GJ et al (2013) Second and subsequent tumours among 1927 retinoblastoma patients diagnosed in Britain 1951–2004. Br J Cancer 108:2455–2463

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cunniff C, Bassetti JA, Ellis NA (2017) Bloom's syndrome: clinical Spectrum, molecular pathogenesis, and Cancer predisposition. Mol Syndromol 8(1):4–23

    CAS  PubMed  Google Scholar 

  96. Laitman Y, Boker-Keinan L, Berkenstadt M, Liphsitz I, Weissglas-Volkov D, Ries-Levavi L et al (2016) The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers. Cancer Genet. 209(3):70–74

    CAS  PubMed  Google Scholar 

  97. Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V (2015) Update of the human and mouse Fanconi anemia genes. Hum Genomics 9:32

    PubMed  PubMed Central  Google Scholar 

  98. Malric A, Defachelles AS, Leblanc T, Lescoeur B, Lacour B, Peuchmaur M (2015) Fanconi anemia and solid malignancies in childhood: a national retrospective study. Pediatr Blood Cancer 62(3):463–470

    PubMed  Google Scholar 

  99. Wimmer K, Rosenbaum T, Messiaen L (2017) Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet 91(4):507–519

    CAS  PubMed  Google Scholar 

  100. Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK et al (2014) Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer 50(5):987–996

    PubMed  Google Scholar 

  101. Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N (2015) Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet 52(11):770–778

    CAS  PubMed  Google Scholar 

  102. Kawai K, Iwashita T, Murakami H, Hiraiwa N, Yoshiki A, Kusakabe M et al (2000) Tissue-specific carcinogenesis in transgenic mice expressing the RET proto-oncogene with a multiple endocrine neoplasia type 2A mutation. Cancer Res 60(18):5254–5260

    CAS  PubMed  Google Scholar 

  103. Martinelli M, Parra A, Scapoli L, De Sanctis P, Chiadini V, Hattinger C et al (2016) CD99 polymorphisms significantly influence the probability to develop Ewing sarcoma in earlier age and patient disease progression. Oncotarget. 7(47):77958–77967

    PubMed  PubMed Central  Google Scholar 

  104. Silva DS, Sawitzki FR, De Toni EC, Graebin P, Picanco JB, Abujamra AL, de Farias CB, Roesler R, Brunetto AL, Alho CS (2012) Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene. Gene. 509(2):263–266

    CAS  PubMed  Google Scholar 

  105. Wang J, Zhou Y, Feng D, Yang H, Li F, Cao Q, Wang A, Xing F (2012) CD86 +1057G/a polymorphism and susceptibility to Ewing's sarcoma: a case-control study. DNA Cell Biol 31(4):537–540

    CAS  PubMed  Google Scholar 

  106. Zhang C, Hou WH, Ding XX, Wang X, Zhao H, Han XW, Wang WJ (2016) Association of Cytotoxic T-lymphocyte Antigen-4 polymorphisms with malignant bone tumor risk: a meta-analysis. Asian Pac J Cancer Prev 17(8):3785–3791

    PubMed  Google Scholar 

  107. Postel-Vinay S, Véron AS, Tirode F, Pierron G, Reynaud S, Kovar H et al (2012) Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet 44(3):323–327

    CAS  PubMed  Google Scholar 

  108. Grünewald TG, Delattre O (2015) Cooperation between somatic mutations and germline susceptibility variants in tumorigenesis - a dangerous liaison. Mol Cell Oncol 3(3):e1086853

    PubMed  PubMed Central  Google Scholar 

  109. Machiela MJ, Grünewald TGP, Surdez D, Reynaud S, Mirabeau O, Karlins E et al (2018) Genome-wide association study identifies multiple new loci associated with Ewing sarcoma susceptibility. Nat Commun 9(1):3184

    PubMed  PubMed Central  Google Scholar 

  110. Monument MJ, Johnson KM, Grossmann AH, Schiffman JD, Randall RL, Lessnick SL (2012) Microsatellites with macro-influence in Ewing sarcoma. Genes (Basel) 3(3):444–460

    Google Scholar 

  111. Monument MJ, Johnson KM, McIlvaine E, Abegglen L, Watkins WS, Jorde LB et al (2014) Clinical and biochemical function of polymorphic NR0B1 GGAA-microsatellites in Ewing sarcoma: a report from the Children's oncology group. PLoS One 9(8):e104378

    PubMed  PubMed Central  Google Scholar 

  112. Kolomietz E, Meyn MS, Pandita A, Squire JA (2002) The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes and Cancer 35(2):97–112

    CAS  PubMed  Google Scholar 

  113. Zucman-Rossi J, Batzer MA, Stoneking M, Delattre O, Thomas G (1997) Interethnic polymorphism of EWS intron 6: genome plasticity mediated by Alu retroposition and recombination. Hum Genet 99(3):357–363

    CAS  PubMed  Google Scholar 

  114. Randall RL, Lessnick SL, Jones KB, Gouw LG, Cummings JE, Cannon-Albright L (2010) Is there a predisposition gene for Ewing's sarcoma? J Oncol 2010:397632

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Holly EA, Aston DA, Ahn DK, Kristiansen JJ (1992) Ewing’s bone sarcoma, paternal occupational exposure, and other factors. Am J Epidemiol 135(2):122–129

    CAS  PubMed  Google Scholar 

  116. Valery PC, Mc Whirter W, Sleigh A, Williams G, Bain C (2002) Farm exposures, parental occupation, and risk of Ewing’s sarcoma in Australia: a national case-control study. Cancer Causes Control 13(3):263–270

    PubMed  Google Scholar 

  117. Valery PC, Mc Whirter W, Sleigh A, Williams G, Bain C (2003) A national case-control study of Ewing’s sarcoma family of tumours in Australia. Int J Cancer 105(6):825–830

    CAS  PubMed  Google Scholar 

  118. Valery PC, Williams G, Sleigh A, Holly EA, Kreiger N, Bain C (2005) Parental occupation and Ewing’s sarcoma: pooled and meta-analysis. Int J Cancer 115(5):799–806

    CAS  PubMed  Google Scholar 

  119. Kovar H, Jug G, Aryee DN, Zoubek A, Ambros P, Gruber B et al (1997) Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is fre quently lost in the Ewing family of tumors. Oncogene. 15:2225–2232

    CAS  PubMed  Google Scholar 

  120. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD et al (2012) Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships. Hum Genet 131:1565–1589

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hanson MA, Skinner MK. Developmental origins of epigenetic transgenerational inheritance. Environ Epigenet. 2016;2(1)

  122. Nilsson E, Skinner M (2015) Environmentally induced epigenetic Transgenerational inheritance of disease susceptibility. Transl Res 165(1):12–17

    CAS  PubMed  Google Scholar 

  123. Adkins RM, Thomas F, Tylavsky FA, Krushkal J (2011) Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet 12:47

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Joo JE, Dowty JG, Milne RL, Wong EM, Dugué PA, English D et al (2018) Heritable DNA methylation marks associated with susceptibility to breast cancer. Nat Commun 9(1):867

    PubMed  PubMed Central  Google Scholar 

  125. Haque MM, Nilsson EE, Holder LB, Skinner MK (2016) Genomic clustering of differential DNA methylated regions (epimutations) associated with the epigenetic transgenerational inheritance of disease and phenotypic variation. BMC Genomics 17:418

    PubMed  PubMed Central  Google Scholar 

  126. Johnson KJ, Carozza SE, Chow EJ et al (2009) Parental age and risk of childhood cancer. Epidemiology. 20(4):475–483

    PubMed  PubMed Central  Google Scholar 

  127. Krepischi AC, Capelli LP, Silva AG, de Araújo ÉS, Pearson PL, Heck B et al (2014) Large germline copy number variations as predisposing factor in childhood neoplasms. Future Oncol 10(9):1627–1633

    CAS  PubMed  Google Scholar 

  128. Hingorani P, Janeway K, Crompton BD, Kadoch C, Mackall CL, Khan J et al (2016) Current state of pediatric sarcoma biology and opportunities for future discovery: a report from the sarcoma translational research workshop. Cancer Genet. 209(5):182–194

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Arash Javadinejad (Health Institute La Fe, Valencia, Spain): English review and editing. Loreto Sales Triguero: graphic design of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Gargallo.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargallo, P., Yáñez, Y., Juan, A. et al. Review: Ewing Sarcoma Predisposition. Pathol. Oncol. Res. 26, 2057–2066 (2020). https://doi.org/10.1007/s12253-019-00765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00765-3

Keywords

Navigation