Skip to main content
Log in

Shifting the optimum pH of Bacillus circulans xylanase towards acidic side by introducing arginine

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Electrostatic interactions are important in protein folding, binding, flexibility, stability and function. The pH at which the enzyme is maximally active is determined by the pKas of the active site residues, which are modulated by several factors including the change in electrostatics in its vicinity. As the acidic xylanases are important in food and animal feed industries, electrostatic interactions are introduced in Bacillus circulans xylanase to shift their pH optima towards the acidic side. Arg substitutions are made to modulate the pKas of the active site residues. Neutral residues are substituted by Arg in such a way that the substituted residue can make direct interaction with the catalytic residues. However, the mutations with other titratable residues (Asp, Arg, Lys, His, Tyr, and Ser) present in between the catalytic sites and the substituted sites are avoided. Site directed mutagenesis was conducted to confirm the strategy. The results show the shift in pH optima of the mutants towards the acidic side by 0.5–1.5 unit. Molecular dynamics simulation of the mutant V37R reveals that the decrease in activity is due to the increase in distance between the substrate oxygen atoms and catalytic glutamates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dominguez, R., H. Souchon, S. Spinelli, Z. Dauter, K. S. Wilson, S. Chauvaux, P. Beguin, and P. M. Alzari (1995) A common protein fold and similar active site in two distinct families of β-glycanases. Nature Structural Biol. 2: 569–576.

    Article  CAS  Google Scholar 

  2. Henrissat, B. and A. Bairoch (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781–788.

    CAS  Google Scholar 

  3. Törrönen, A. and J. Rouvinen (1997) Structural and functional properties of low molecular weight endo-1,4-β-xylanases. J. Biotechnol. 57: 137–149.

    Article  Google Scholar 

  4. Törrönen, A. (1995) Structural comparison of two major endo-1,4-xylanases from trichoderma reesei. Biochem. 34: 847–856.

    Article  Google Scholar 

  5. Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim (2005) Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577–591.

    Article  CAS  Google Scholar 

  6. Joo, J. C., S. P. Pack, Y. H. Kim, and Y. J. Yoo (2011) Thermostabilization of Bacillus circulans xylanase: Computational optimization of unstable residues based on thermal fluctuation analysis. J. Biotechnol. 151: 56–65.

    Article  CAS  Google Scholar 

  7. Joo, J. C., S. Pohkrel, S. P. Pack, and Y. J. Yoo (2010) Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity. J. Biotechnol. 146: 31–39.

    Article  CAS  Google Scholar 

  8. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal (2001) Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326–338.

    Article  CAS  Google Scholar 

  9. Tan, S. S., D. Y. Li, Z. Q. Jiang, Y. P. Zhu, B. Shi, and L. T. Li (2008) Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C. Bioresour. Technol. 99: 200–204.

    Article  CAS  Google Scholar 

  10. Tenkanen, M., L. Viikari, and J. Buchert (1997) Use of acid-tolerant xylanase for bleaching of kraft pulps. Biotechnol. Techniques. 11: 935–938.

    Article  CAS  Google Scholar 

  11. Inoue, M., H. Yamada, T. Yasukochi, R. Kuroki, T. Miki, T. Horiuchi, and T. Imoto (1992) Multiple role of hydrophobicity of tryptophan-108 in chicken lysozyme: Structural stability, saccharide binding ability, and abnormal pKa of glutamic acid-35. Biochem. 31: 5545–5553.

    Article  CAS  Google Scholar 

  12. Viikari, L., A. Kantelinen, J. Sundquist, and M. Linko (1994) Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Rev. 13: 335–350.

    Article  CAS  Google Scholar 

  13. Chinea, G., G. Padron, R. W. W. Hooft, C. Sander, and G. Vriend (1995) The use of position-specific rotamers in model building by homology. Proteins: Structure, Function and Gen. 23: 415–421.

    Article  CAS  Google Scholar 

  14. Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin (2004) UCSF Chimera — A visualization system for exploratory research and analysis. J. Computat. Chem. 25: 1605–1612.

    Article  CAS  Google Scholar 

  15. Dolinsky, T. J., J. E. Nielsen, J. A. McCammon, and N. A. Baker (2004) PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32: 665–667.

    Article  Google Scholar 

  16. Joshi, M. D., G. Sidhu, J. E. Nielsen, G. D. Brayer, S. G. Withers, and L. P. McIntosh (2001) Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochem. 40: 10115–10139.

    Article  CAS  Google Scholar 

  17. Joshi, M. D., G. Sidhu, I. Pot, G. D. Brayer, S. G. Withers, and L. P. McIntosh (2000) Hydrogen bonding and catalysis: A novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 299: 255–279.

    Article  CAS  Google Scholar 

  18. Zheng, L., U. Baumann, and J. L. Reymond (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32. 115.

    Article  Google Scholar 

  19. Li, Z. L., T. M. Bricker, and R. Burnap (2000) Kinetic characterization of His-tagged CP47 Photosystem II in Synechocystis sp. PCC6803. Biochim. Biophysic. Acta — Bioenerg. 1460: 384–389.

    Article  CAS  Google Scholar 

  20. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  21. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  22. Vandermarliere, E., T. M. Bourgois, S. Rombouts, S. Van Campenhout, G. Volckaert, S. V. Strelkov, J. A. Delcour, A. Rabijns, and C. M. Courtin (2008) Crystallographic analysis shows substrate binding at the −3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-β-xylanases. Biochem. J. 410: 71–79.

    Article  CAS  Google Scholar 

  23. Vardakou, M., C. Dumon, J. W. Murray, P. Christakopoulos, D. P. Weiner, N. Juge, R. J. Lewis, H. J. Gilbert, and J. E. Flint (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J. Mol. Biol. 375: 1293–1305.

    Article  CAS  Google Scholar 

  24. Davies, M. N., C. P. Toseland, D. S. Moss, and D. R. Flower (2006) Benchmarking pKa prediction. BMC Biochem. 7: 18.

    Article  Google Scholar 

  25. Masui, A., N. Fujiwara, K. Yamamoto, M. Takagi, and T. Imanaka (1998) Rational design for stabilization and optimum pH shift of serine protease aprN. J. Ferment. Bioeng. 85: 30–36.

    Article  CAS  Google Scholar 

  26. Masui, A., N. Fujiwara, and T. Imanaka (1994) Stabilization and rational design of serine protease AprM under highly alkaline and high-temperature conditions. Appl. Environ. Microbiol. 60: 3579–3584.

    CAS  Google Scholar 

  27. Shirai, T., A. Suzuki, T. Yamane, T. Ashida, T. Kobayashi, J. Hitomi, and S. Ito (1997) High-resolution crystal structure of M-protease: Phylogeny aided analysis of the high-alkaline adaptation mechanism. Prot. Eng. 10: 627–634.

    Article  CAS  Google Scholar 

  28. Turunen, O., M. Vuorio, F. Fenel, and M. Leisola (2002) Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Prot. Eng. 15: 141–145.

    Article  CAS  Google Scholar 

  29. Russell, A. J. and A. R. Fersht (1987) Rational modification of enzyme catalysis by engineering surface charge. Nature 328: 496–500.

    Article  CAS  Google Scholar 

  30. Tynan-Connolly, B. M. and J. E. Nielsen (2007) Redesigning protein pKa values. Prot. Sci. 16: 239–249.

    Article  CAS  Google Scholar 

  31. Tina, K. G., R. Bhadra, and N. Srinivasan (2007) PIC: Protein Interactions Calculator. Nucleic Acids Res. 35: 473–476.

    Article  Google Scholar 

  32. Kamal, M. Z., T. A. S. Mohammad, G. Krishnamoorthy, and N. M. Rao (2012) Role of active site rigidity in activity: Md simulation and fluorescence study on a lipase mutant. PLoS ONE. 7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Je Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokhrel, S., Joo, J.C. & Yoo, Y.J. Shifting the optimum pH of Bacillus circulans xylanase towards acidic side by introducing arginine. Biotechnol Bioproc E 18, 35–42 (2013). https://doi.org/10.1007/s12257-012-0455-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0455-x

Keywords

Navigation