Skip to main content
Log in

In-situ detection of neurotransmitter release from PC12 cells using Surface Enhanced Raman Spectroscopy

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Rat pheochromocytoma PC12 cells have frequently been used as a dopaminergic neuron model due to their various functions, including the synthesis, storage, and secretion of catecholamines. Furthermore, PC12 cells release a measurable amount of dopamine (DA) in response to some chemicals. PC12 cells are thus considered to be one of the most common invitro models for studying neurotransmitter release. Here, we applied Surface-enhanced Raman Spectroscopy (SERS) to determine with high sensitivity the in-situ short-time effects of cisplatin (cisdiamine- dichloroplatinum), bisphenol-A, and cyclophosphamide on the extracellular DA level released from PC12 cells. In addition, using the SERS technique, changes in the biochemical composition of the PC12 cell lysates were investigated to determine the intracellular DA level. Gold nano-patterned substrates were fabricated based on electrochemical deposition of Au nanorods onto ITO substrates; these substrates were then used as SERS-active surfaces. The Raman spectroscopy results demonstrated that the changes in the Raman spectra depending on the treatment agent were in agreement with the HPLC results on the extracellular DA level. Therefore, the SERS technique can overcome the limitations of other detection techniques, and can be used with cellular nanoarrays to study the effect of a wide range of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, S. C., E. Carpenter, M. L. Roberts, and C. Peers (1999) Potentiation of quantal catecholamine secretion by glibenclamide: Evidence for a novel role of sulphonylurea receptors in regulating the Ca(2+) sensitivity of exocytosis. J. Neurosci. 19: 5741–5749.

    CAS  Google Scholar 

  2. Pothos, E., M. Desmond, and D. Sulzer (1996) l–3,4-Dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release in vitro. J. Neurochem. 66: 629–636.

    Article  CAS  Google Scholar 

  3. Zachor, D. A., J. F. Moore, C. Brezausek, A. Theibert, and A. K. Percy (2000) Cocaine inhibits NGF-induced PC12 cells differentiation through D1-type dopamine receptors. Brain Res. 869: 85–97.

    Article  CAS  Google Scholar 

  4. Presse, F., B. Cardona, L. Borsu, and J.-L. Nahon (1997) Lithium increases melanin-concentrating hormone mRNA stability and inhibits tyrosine hydroxylase gene expression in PC12 cells. Mol. Brain Res. 52: 270–283.

    Article  CAS  Google Scholar 

  5. Tischler, A. S., R. L. Perlman, G. M. Morse, and B. E. Sheard (1983) Glucocorticoids increase catecholamine synthesis and storage in PC12 pheochromocytoma cell cultures. J Neurochem. 40: 364–370.

    Article  CAS  Google Scholar 

  6. Brownell, A. L., B. G. Jenkins, and O. Isacson (1999) Dopamine imaging markers and predictive mathematical models for progressive degeneration in Parkinson’s disease. Biomed. Pharmacother. 53: 131–140.

    Article  CAS  Google Scholar 

  7. Carr, D. B., P. O’Donnell, J. P. Card, and S. R. Sesack (1999) Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. The J. Neurosci. 19: 11049–11060.

    CAS  Google Scholar 

  8. Shi, B., W. Huang, and J. Cheng (2007) Determination of neurotransmitters in PC 12 cells by microchip electrophoresis with fluorescence detection. Electrophoresis 28: 1595–1600.

    Article  CAS  Google Scholar 

  9. Steiner, J. P., T. M. Dawson, M. Fotuhi, and S. H. Snyder (1996) Immunophilin regulation of neurotransmitter release. Mol. Med. 2: 325–333.

    CAS  Google Scholar 

  10. Vo, T. D. L., J.-S. Ko, S. H. Lee, S. J. Park and S. H. Hong (2013) Overexpression of Neurospora crassa OR74A glutamate decarboxylase in Escherichia coli for efficient GABA production. Biotechnol. Bioproc. Eng. 18: 1062–1066.

    Article  Google Scholar 

  11. Zuriani, R., S. Vigneswari, M. N. M. Azizan, M. I. A. Majid and A. A. Amirul (2013) A high throughput nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnol. Bioproc. Eng. 18: 472–478.

    Article  CAS  Google Scholar 

  12. Park, J. K., Z.-H. Kim, C. G. Lee, A. Synytsya, H. S. Jo, S. O. Kim, J. W. Park, and Y. I. Park (2011) Characterization and immunostimulating activity of a water-soluble polysaccharide isolated from Haematococcus lacustris. Biotechnol. Bioproc. Eng. 16: 1090–1098.

    Article  CAS  Google Scholar 

  13. Schulze, H. G., L. S. Greek, B. B. Gorzalka, A. V. Bree, M. W. Blades, and R. F. B. Turner (1995) Artificial neural network and classical least-squares methods for neurotransmitter mixture analysis. J. Neurosci. Methods 56: 155–167.

    Article  CAS  Google Scholar 

  14. El-Said, W. A., J.-H. Lee, B.-K. Oh, and J.-W. Choi (2011) Electrochemical sensor to detect neurotransmitter using gold nano-island coated ITO electrode. J. Nanosci. Nanotechnol. 11: 6539–6543.

    Article  CAS  Google Scholar 

  15. El-Said, W. A., T. H. Kim, C. H. Yea, H. Kim, and J. W. Choi (2011) Fabrication of gold nanoparticle modified ITO substrate to detect beta-amyloid using surface-enhanced Raman scattering. J. Nanosci. Nanotechnol. 11: 768–772.

    Article  CAS  Google Scholar 

  16. El-Said, W. A., T.-H. Kim, H. Kim, and J.-W. Choi (2010) Detection of effect of chemotherapeutic agents to cancer cells on gold nanoflower patterned substrate using surface-enhanced Raman scattering and cyclic voltammetry. Biosens. Bioelectron. 26: 1486–1492.

    Article  CAS  Google Scholar 

  17. Chen, J., J. Jiang, X. Gao, G. Liu, G. Shen, and R. Yu (2008) A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy. Chem. (Weinheim an der Bergstrasse, Germany). 14: 8374–8382.

    CAS  Google Scholar 

  18. Talley, C. E., L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. Anal. Chem. 76: 7064–7068.

    Article  CAS  Google Scholar 

  19. Wang, Z., A. Bonoiu, M. Samoc, Y. Cui, and P. N. Prasad (2008) Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. Biosens. Bioelectron. 23: 886–891.

    Article  CAS  Google Scholar 

  20. Nowak-Lovato, K. L. and K. D. Rector (2012) Live cells as dynamic laboratories: Time lapse raman spectral microscopy of nanoparticles with both IgE targeting and pH-sensing functions. Int. J. Anal. Chem. 2012: 390182.

    Article  Google Scholar 

  21. El-Said, W. A., T. H. Kim, H. Kim, and J. W. Choi (2011) Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering. PloS one. 6: e15836.

    Article  CAS  Google Scholar 

  22. Orendorff, C. J., L. Gearheart, N. R. Jana, and C. J. Murphy (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Physic. Chem. Chem. Phys. 8: 165–170.

    Article  CAS  Google Scholar 

  23. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz (2002) The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107: 668–677.

    Article  Google Scholar 

  24. Niesen, B., B. P. Rand, P. Van Dorpe, H. Shen, B. Maes, J. Genoe, and P. Heremans (2010) Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles. Optics Exp. 18: 19032–19038.

    Article  CAS  Google Scholar 

  25. Huang, H., L. Zhu, B. R. Reid, G. P. Drobny, and P. B. Hopkins (1995) Solution structure of a cisplatin-induced DNA interstrand cross-link. Science 270: 1842–1845.

    Article  CAS  Google Scholar 

  26. Ta, L. E., L. Espeset, J. Podratz, and A. J. Windebank (2006) Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum–DNA binding. Neurotoxicol. 27: 992–1002.

    Article  CAS  Google Scholar 

  27. Kasabdji, D., V. Shanmugam, and A. Rathinavelu (1996) Effect of cisplatin on dopamine release from PC12 cells. Life Sci. 59: 1793–1801.

    Article  CAS  Google Scholar 

  28. Peng, S., J. M. McMahon, G. C. Schatz, S. K. Gray, and Y. Sun (2010) Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. U.S.A. 107: 14530–14534.

    Article  CAS  Google Scholar 

  29. Kim, J., J. Lee, S. Kwon, and S. Jeong (2009) Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J. Nanosci. Nanotechnol. 9: 1098–1102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Woo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Said, W.A., Choi, JW. In-situ detection of neurotransmitter release from PC12 cells using Surface Enhanced Raman Spectroscopy. Biotechnol Bioproc E 19, 1069–1076 (2014). https://doi.org/10.1007/s12257-014-0092-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0092-7

Keywords

Navigation