Skip to main content
Log in

Evaluation of feeding regimes to enhance PHA production using acetic and butyric acids by a pure culture of Cupriavidus necator

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study volatile fatty acids (VFAs), which are by-products from anaerobic fermentations, have been used as the carbon source for polyhydroxyalkanoates (PHA) production by pure culture bacteria, Cupriavidus necator. A number of factors influence the conversion efficiencies of VFAs to PHAs including the bacterial feeding regimes. When VFA was supplied as a single feed, it was found that concentrations higher than 2% v/v VFA led to substrate inhibition and only 18% acetic acid and 12% of butyric acid was converted into PHA. This resulted in less than 65% (w/w) of PHA content within the microbial cells. Hence, the single VFA feeding strategy was found to provide low conversion rates of VFA into polymer. An improved feeding strategy was found to be the use of an automatic VFA feed based on the pH control of the medium, which led to a more continuous feeding regime. The conversion of VFA to PHA was increased by almost 2-fold to 33 and 22% for acetic acid and butyric acid respectively, with up to 75% (w/w) of PHA resultant within the microbial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, C. S. K., R. Ghai, Rashmi, and V. C. Kalia (2003) Polyhydroxyalkanoates: An overview. Bioresour. Technol. 87: 137–146.

    Article  CAS  Google Scholar 

  2. Van Beilen J. B. and Y. Poirier (2008) Production of renewable polymers from crop plants. The Plant J. 54: 684–701.

    Article  Google Scholar 

  3. Somleva M. N., K. D. Snell, J. J. Beaulieu, O. P. Peoples, B. Garrison, and N. A. Patterson (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol. J. 6: 663–678.

    Article  CAS  Google Scholar 

  4. Petrasovits, L. A., M. P. Purnell, L. K. Nielsen, and S. M. Brumbley (2007)Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol. J. 5: 162–172.

  5. Pham, T. H., J. S. Webb, and B. Rehm (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiol. 150: 3405–3413.

    Article  CAS  Google Scholar 

  6. Madison, L. L. and G. W. Huisman (1999) Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21–53.

    CAS  Google Scholar 

  7. Dawes, E. A. (1990) Novel Microbial Polymers: An Introductory Overview. pp. 3–16. In: E. A. Dawes (ed.). Novel Biodegradable Microbial Polymers. Kluwer Academic Publishers, The Netherlands.

    Chapter  Google Scholar 

  8. Choi, J. and Y. Sang (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioproc. Eng. 17: 335–342.

    Article  CAS  Google Scholar 

  9. Johnson, K., Y. Jiang, R. Kleerebezem, G. Muyzer, and M. Loosdrecht (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromol. 10: 670–676.

    Article  CAS  Google Scholar 

  10. Albuquerque, M., C. Torres, and M. Reis (2010) Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection. Water Res. 44: 3419–3433.

    Article  CAS  Google Scholar 

  11. Qu, B. and J. X. Liu (2009) Determination of optimum operating conditions for production of polyhydroxybutyrate by activated sludge submitted to dynamic feeding regime. Environ. Sci. Technol. 54: 142–149.

    CAS  Google Scholar 

  12. Kedia, G., P. Passanha, R. M. Dinsdale, A. J. Guwy, M. Lee, and S. R. Esteves (2013) Addressing the challenge of optimum polyhydroxyalkanoate harvesting: Monitoring real time process kinetics and biopolymer accumulation using dielectric spectroscopy. Bioresour. Technol. 134: 143–150.

    Article  CAS  Google Scholar 

  13. Johnson, K., Y. Jiang, R. Kleerebezem, and M. Loosdrecht (2010) Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs. Water Res. 44: 2141–2152.

    Article  CAS  Google Scholar 

  14. Jiang, Y., Y. Chen, and X. Zheng (2009) Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Environ. Sci. Technol. 20: 7734–7741.

    Article  Google Scholar 

  15. Khanna, S. and A. Srivastava (2005) Statistical optimization studies for growth and PHB production by Ralstonia eutropha. Proc. Biochem. 40: 2173–2182.

    Article  CAS  Google Scholar 

  16. Khanna, S. and A. Srivastava (2005) Optimization of nutrient feed concentration and addition time for production of polyhydroxybutyrate. Enz. Microbial. Technol. 39: 1145-1151.

  17. Albuquerque, M., V. Martino, E. Pollet, L. Averous, and M. Reis (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. J. Biotechnol. 151: 66–76.

    Article  CAS  Google Scholar 

  18. Chen, H., H. Meng, Z. Nie, and M. Zhang (2013) Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes. Bioresour. Technol. 128: 533–538.

    Article  CAS  Google Scholar 

  19. Cruwys, J. A., R. M. Dinsdale, F. R. Hawkes, and D. L. Hawkes (2002) Development of a static headspace gas chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters. J. Chromatography A 945: 195–209.

    Article  CAS  Google Scholar 

  20. Law, J. and R. Slepecky (1961) Assay of Poly-â-hydroxybutyric acid. J. Bacteriol. 82: 33–36.

    CAS  Google Scholar 

  21. Handrick, R., S. Reinhard, and D. Jendrossek (2000) Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha. J. Bacteriol. 182: 5916–5918.

    Article  CAS  Google Scholar 

  22. Xu, Y., R. Wang, A. Koutinas, and C. Webb (2010) Microbial biodegradable plastics production from a wheat-based bio refining strategy. Proc. Biochem. 45: 153–163.

    Article  CAS  Google Scholar 

  23. Wang, Y. J., F. L. Hua, Y. F. Tsang, S. Y. Chan, S. N. Sin, H. Chua, P. Yu, and N. Q. Ren (2007) Synthesis of PHAs from waster under various C: N ratios. Bioresour. Technol. 98: 1690–1693.

    Article  CAS  Google Scholar 

  24. Serafim, S., C. Lemos, R. Oliveira, and M. Reis (2004) Optimization of Polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol. Bioeng. 87: 145–160.

    Article  CAS  Google Scholar 

  25. Yu, J., Y. Si, and R. W. Wong (2002) Kinetics modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates by Ralstonia eutropha. Proc. Biochem. 37: 731–738.

    Article  CAS  Google Scholar 

  26. Wang, J. and J. Yu (2000) Kinetic analysis on inhibited growth and poly(3-hydroxybutyrate) formation of Alcaligenes eutrophus on acetate under nutrient-rich conditions. Proc. Biochem. 36: 201–207.

    Article  CAS  Google Scholar 

  27. Makkar, N. S. and L. E. Casida (1987) Cupriavidus necator gen. nov., sp. nov.; A nonobligate bacterial predator of bacteria in soil. Int. J. Syst. Evol. Microbiol. 37: 323–326.

    Google Scholar 

  28. Kim, B. S., S. C. Lee, S. Y. Lee, H. N. Chang, Y. K. Chang, and S. I. Woo (1994) Production of poly(3-hydroxybutyric-co-3- hydroxyvaleric acid) by fed-batch culture of Alcaligenes eutrophus with substrate control using on-line glucose analyzer. Enz. Microb. Technol. 16: 556–561.

    Article  CAS  Google Scholar 

  29. Shang, L. G., M. Jiang, and H. N. Chang (2003) Poly(3-hydroxybutyrate) synthesis in fed batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol. Lett. 25: 1415–1419.

    Article  CAS  Google Scholar 

  30. Albuquerque, M., M. Eiroa, C. Torres, B. Nunes, and M. Reis (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J. Biotechnol. 130: 411–421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra R. Esteves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kedia, G., Passanha, P., Dinsdale, R.M. et al. Evaluation of feeding regimes to enhance PHA production using acetic and butyric acids by a pure culture of Cupriavidus necator . Biotechnol Bioproc E 19, 989–995 (2014). https://doi.org/10.1007/s12257-014-0144-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0144-z

Keywords

Navigation