Skip to main content
Log in

Biotechnological Advances and Trends in Engineering Trichoderma reesei towards Cellulase Hyperproducer

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cellulase has the biggest contribution to the high production costs of lignocellulose bioconversion and the substantial decrease of its production cost is the key to the commercialization of lignocellulosic biorefineries. Trichoderma reesei has the most robust cellulase among the candidates, which therefore is widely used for cellulase production in industry. This is not because of the size of its cellulase gene pool but its prodigious cargo of cellulase productivity. Still, T. reesei cellulase falls far short of perfection in real-world applications, especially for the composition. This review summarized the biotechnological advances in engineering T. reesei for enhanced cellulase production. Meanwhile, we proposed innovative ideas of systematically optimizing cellulase composition at the transcriptional level and improving cellulase production at the regulation level. Efficient genome editing is essential to achieving that target. Thus, the developments of the tools of multiple gene manipulations were discussed in detail here. This review provides ideas and/or inspirations to the future researches on T. reesei cellulase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, R., S. Singh, and O. V. Singh (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377–391.

    Article  CAS  PubMed  Google Scholar 

  2. Singhania, R. R., R. K. Sukumaran, A. K. Patel, C. Larroche, and A. Pandey (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541–549.

    Article  CAS  Google Scholar 

  3. Peterson, R. and H. Nevalainen (2012) Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology. 158: 58–68.

    Article  CAS  PubMed  Google Scholar 

  4. Seidl, V. and B. Seiboth (2010) Trichoderma reesei: genetic approaches to improving strain efficiency. Biofuels. 1: 343–354.

    Article  CAS  Google Scholar 

  5. Percival Zhang, Y. H., M. E. Himmel, and J. R. Mielenz (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24: 452–481.

    Article  CAS  PubMed  Google Scholar 

  6. Schuster, A. and M. Schmoll (2010) Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87: 787–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kubicek, C. P. (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol. 163: 133–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Druzhinina, I. S., K. Chenthamara, J. Zhang, L. Atanasova, D. Yang, Y. Miao, M. J. Rahimi, M. Grujic, F. Cai, S. Pourmehdi, K. A. Salim, C. Pretzer, A. G. Kopchinskiy, B. Henrissat, A. Kuo, H. Hundley, M. Wang, A. Aerts, A. Salamov, A. Lipzen, K. LaButti, K. Barry, I. V. Grigoriev, Q. Shen, and C. P. Kubicek (2018) Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet. 14: e1007322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Druzhinina, I. S. and C. P. Kubicek (2017) Genetic engineering of Trichoderma reesei cellulases and their production. Microb. Biotechnol. 10: 1485–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saloheimo, M. and T. M. Pakula (2012) The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology. 158: 46–57.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, J., Y. H. Wang, J. Chu, L. Z. Luo, Y. P. Zhuang, and S. L. Zhang (2009) Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour. Technol. 100: 819–825.

    Article  CAS  PubMed  Google Scholar 

  12. Billard, H., A. Faraj, N. Lopes Ferreira, S. Menir, and S. Heiss-Blanquet (2012) Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol. Biofuels. 5: 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Druzhinina, I. S. and C. P. Kubicek (2016) Familiar stranger: Ecological genomics of the model saprotroph and industrial enzyme producer Trichoderma reesei breaks the stereotypes. Adv. Appl. Microbiol. 95: 69–147.

    Article  CAS  PubMed  Google Scholar 

  14. Song, B., B. Li, X. Wang, W. Shen, S. Park, C. Collings, A. Feng, S. J. Smith, J. D. Walton, and S. Y. Ding (2018) Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility. Biotechnol. Biofuels. 11: 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Martinez, D., R. M. Berka, B. Henrissat, M. Saloheimo, M. Arvas, S. E. Baker, J. Chapman, O. Chertkov, P. M. Coutinho, D. Cullen, E. G. J. Danchin, I. V. Grigoriev, P. Harris, M. Jackson, C. P. Kubicek, C. S. Han, I. Ho, L. F. Larrondo, A. L. de Leon, J. K. Magnuson, S. Merino, M. Misra, B. Nelson, N. Putnam, B. Robbertse, A. A. Salamov, M. Schmoll, A. Terry, N. Thayer, A. Westerholm-Parvinen, C. L. Schoch, J. Yao, R. Barabote, M. A. Nelson, C. Detter, D. Bruce, C. R. Kuske, G. Xie, P. Richardson, D. S. Rokhsar, S. M. Lucas, E. M. Rubin, N. Dunn-Coleman, M. Ward, and T. S. Brettin (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26: 553–560.

    Article  CAS  PubMed  Google Scholar 

  16. Nidetzky, B., W. Steiner, M. Hayn, and M. Claeyssens (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem. J. 298: 705–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang, H. and L. Xia (2013) High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production. Bioresour. Technol. 144: 693–697.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, I. J., J. Y. Jung, H. J. Lee, H. S. Park, Y. H. Jung, K. Park, and K. H. Kim (2015) Customized optimization of cellulase mixtures for differently pretreated rice straw. Bioprocess Biosyst. Eng. 38: 929–937.

    Article  CAS  PubMed  Google Scholar 

  19. Medve, J., J. Karlsson, D. Lee, and F. Tjerneld (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59: 621–634.

    Article  CAS  PubMed  Google Scholar 

  20. Jin, X. and L. Xia (2011) Heterologous expression of an endo-β-1,4-glucanase gene from the anaerobic fungus Orpinomyces PC-2 in Trichoderma reesei. World J. Microbiol. Biotechnol. 27: 2913–2920.

    Article  CAS  Google Scholar 

  21. Gu, B. and L. Xia (2013) High expression of a neutral endo-β-glucanase gene from Humicola insolens in Trichoderma reesei. J. Ind. Microbiol. Biotechnol. 40: 773–779.

    Article  CAS  PubMed  Google Scholar 

  22. Miettinen-Oinonen, A. and P. Suominen (2002) Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Appl. Environ. Microb. 68: 3956–3964.

    Article  CAS  Google Scholar 

  23. Jin, X., N. Meng, and L. M. Xia (2011) Expression of an endo-β-1,4-glucanase gene from Orpinomyces PC-2 in Pichia pastoris. Int. J. Mol. Sci. 12: 3366–3380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, X. M., Q. Yang, Z. H. Liu, J. X. Fan, X. L. Chen, J. Z. Song, and Y. Wang (2010) Cloning and heterologous expression of a novel endoglucanase gene egVIII from Trichoderma viride in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 162: 103–115.

    Article  CAS  PubMed  Google Scholar 

  25. Qin, Y., X. Wei, X. Liu, T. Wang, and Y. Qu (2008) Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expr. Purif. 58: 162–167.

    Article  CAS  PubMed  Google Scholar 

  26. Griggs, A. J., J. J. Stickel, and J. J. Lischeske (2012) A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: depolymerization by EGI and CBHI. Biotechnol. Bioeng. 109: 665–675.

    Article  CAS  PubMed  Google Scholar 

  27. Foreman, P. K., D. Brown, L. Dankmeyer, R. Dean, S. Diener, N. S. Dunn-Coleman, F. Goedegebuur, T. D. Houfek, G. J. England, A. S. Kelley, H. J. Meerman, T. Mitchell, C. Mitchinson, H. A. Olivares, P. J. M. Teunissen, J. Yao, and M. Ward (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278: 31988–319

    Article  PubMed  Google Scholar 

  28. Herpoel-Gimbert, I., A. Margeot, A. Dolla, G. Jan, D. Molle, S. Lignon, H. Mathis, J. C. Sigoillot, F. Monot, and M. Asther (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol. Biofuels. 1: 18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fang, H., C. Zhao, and X. Y. Song (2010) Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02. Bioresour. Technol. 101: 4111–4119.

    Article  CAS  PubMed  Google Scholar 

  30. Ahamed, A. and P. Vermette (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem. Eng. J. 42: 41–46.

    Article  CAS  Google Scholar 

  31. Wen, Z., W. Liao, and S. Chen (2005) Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem. 40: 3087–3094.

    Article  CAS  Google Scholar 

  32. Fang, H., C. Zhao, X. Y. Song, M. Chen, Z. Chang, and J. Chu (2013) Enhanced cellulolytic enzyme production by the synergism between Trichoderma reesei RUT-C30 and Aspergillus niger NL02 and by the addition of surfactants. Biotechnol. Bioprocess Eng. 18: 390–398.

    Article  CAS  Google Scholar 

  33. Wang, B. and L. Xia (2011) High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei. Bioresour. Technol. 102: 4568–4572.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, J., Y. Zhong, X. Zhao, and T. Wang (2010) Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresour. Technol. 101: 9815–9818.

    Article  CAS  PubMed  Google Scholar 

  35. Nakazawa, H., T. Kawai, N. Ida, Y. Shida, Y. Kobayashi, H. Okada, S. Tani, J. Sumitani, T. Kawaguchi, Y. Morikawa, and W. Ogasawara (2012) Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus beta-glucosidase 1 for efficient biomass conversion. Biotechnol. Bioeng. 109: 92–99.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, M., J. Zhao, and L. Xia (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71: 411–415.

    Article  CAS  Google Scholar 

  37. Zhao, C., L. Deng, and H. Fang (2018) Mixed culture of recombinant Trichoderma reesei and Aspergillus niger for cellulase production to increase the cellulose degrading capability. Biomass Bioenergy. 112: 93–98.

    Article  CAS  Google Scholar 

  38. Kolasa, M., B. K. Ahring, P. S. Lubeck, and M. Lubeck (2014) Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour. Technol. 169: 143–148.

    Article  CAS  PubMed  Google Scholar 

  39. Meng, Q. S., C. G. Liu, X. Q. Zhao, and F. W. Bai (2018) Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. J. Biotechnol. 285: 56–63.

    Article  CAS  PubMed  Google Scholar 

  40. Qian, Y., L. Zhong, J. Gao, N. Sun, Y. Wang, G. Sun, Y. Qu, and Y. Zhong (2017) Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues. Microb. Cell Fact. 16: 207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fang, H. and L. Xia (2015) Cellulase production by recombinant Trichoderma reesei and its application in enzymatic hydrolysis of agricultural residues. Fuel. 143: 211–216.

    Article  CAS  Google Scholar 

  42. Glass, N. L., M. Schmoll, J. H. D. Cate, and S. Coradetti (2013) Plant cell wall deconstruction by ascomycete fungi. Annu. Rev. Microbiol. 67: 477–498.

    Article  CAS  PubMed  Google Scholar 

  43. Igarashi, K., T. Uchihashi, A. Koivula, M. Wada, S. Kimura, T. Okamoto, M. Penttila, T. Ando, and M. Samejima (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science. 333: 1279–1282.

    Article  CAS  PubMed  Google Scholar 

  44. Xia, Y., L. Yang, and L. Xia (2018) Combined strategy of transcription factor manipulation and beta-glucosidase gene overexpression in Trichoderma reesei and its application in lignocellulose bioconversion. J. Ind. Microbiol. Biotechnol. 45: 803–811.

    Article  CAS  PubMed  Google Scholar 

  45. Culbertson, A., M. Jin, L. da Costa Sousa, B. E. Dale, and V. Balan (2013) In-house cellulase production from AFEX™ pretreated corn stover using Trichoderma reesei RUT C-30. RSC Adv. 3: 25960–25969.

    Article  CAS  Google Scholar 

  46. Rana, V., A. D. Eckard, P. Teller, and B. K. Ahring (2014) On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour. Technol. 154: 282–289.

    Article  CAS  PubMed  Google Scholar 

  47. Fang, H., C. Zhao, and S. Chen (2016) Single cell oil production by Mortierella isabellina from steam exploded corn stover degraded by three-stage enzymatic hydrolysis in the context of on-site enzyme production. Bioresour. Technol. 216: 988–995.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, C., Z. Zou, J. Li, H. Jia, J. Liesche, H. Fang, and S. Chen (2017) A novel and efficient bioprocess from steam exploded corn stover to ethanol in the context of on-site cellulase production. Energy. 123: 499–510.

    Article  CAS  Google Scholar 

  49. Zhao, C., Z. Zou, J. Li, H. Jia, J. Liesche, S. Chen, and H. Fang (2018) Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production. Renew. Energy. 118: 14–24.

    Article  CAS  Google Scholar 

  50. Li, C., F. Lin, Y. Li, W. Wei, H. Wang, L. Qin, Z. Zhou, B. Li, F. Wu, and Z. Chen (2016) A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microb. Cell Fact. 15: 151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gupta, V. K., A. S. Steindorff, R. G. de Paula, R. Silva-Rocha, A. R. Mach-Aigner, R. L. Mach, and R. N. Silva (2016) The post-genomic era of Trichoderma reesei: What’s next? Trends Biotechnol. 34: 970–982.

    Article  CAS  PubMed  Google Scholar 

  52. Kubicek, C. P., M. Mikus, A. Schuster, M. Schmoll, and B. Seiboth (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels. 2: 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhao, C., L. Deng, H. Fang, and S. Chen (2017) Microbial oil production by Mortierella isabellina from corn stover under different pretreatments. RSC Adv. 7: 56239–56246.

    Article  CAS  Google Scholar 

  54. Wan, C. and Y. Li (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 30: 1447–1457.

    Article  CAS  PubMed  Google Scholar 

  55. Galbe, M. and G. Zacchi (2012) Pretreatment: The key to efficient utilization of lignocellulosic materials. Biomass Bioenergy. 46: 70–78.

    Article  CAS  Google Scholar 

  56. Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851–4861.

    Article  CAS  PubMed  Google Scholar 

  57. Yang, B., L. Tao, and C. E. Wyman (2018) Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels Bioprod. Biorefin. 12: 125–138.

    Article  CAS  Google Scholar 

  58. Hassan, S. S., G. A. Williams, and A. K. Jaiswal (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 262: 310–318.

    Article  CAS  PubMed  Google Scholar 

  59. Stricker, A. R., R. L. Mach, and L. H. de Graaff (2008) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl. Microbiol. Biotechnol. 78: 211–220.

    Article  CAS  PubMed  Google Scholar 

  60. Till, P., M. E. Pucher, R. L. Mach, and A. R. Mach-Aigner (2018) A long noncoding RNA promotes cellulase expression in Trichoderma reesei. Biotechnol. Biofuels. 11: 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mach-Aigner, A. R., M. E. Pucher, M. G. Steiger, G. E. Bauer, S. J. Preis, and R. L. Mach (2008) Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl. Environ. Microbiol. 74: 6554–6562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dos Santos Castro, L., R. G. de Paula, A. C. C. Antonieto, G. F. Persinoti, R. Silva-Rocha, and R. N. Silva (2016) Understanding the role of the master regulator Xyr1 in Trichoderma reesei by global transcriptional analysis. Front. Microbiol. 7: 175.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Aro, N., A. Saloheimo, M. Ilmén, and M. Penttilä (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J. Biol. Chem. 276: 24309–24314.

    Article  CAS  PubMed  Google Scholar 

  64. Häkkinen, M., M. J. Valkonen, A. Westerholm-Parvinen, N. Aro, M. Arvas, M. Vitikainen, M. Penttilä, M. Saloheimo, and T. M. Pakula (2014) Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol. Biofuels. 7: 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ilmén, M., C. Thrane, and M. Penttilä (1996) The glucose repressor gene cre1 of Trichoderma: Isolation and expression of a full-length and a truncated mutant form. Mol. Gen. Genet. 251: 451–460.

    PubMed  Google Scholar 

  66. Aro, N., M. Ilmen, A. Saloheimo, and M. Penttila (2003) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl. Environ. Microbiol. 69: 56–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Denton, J. A. and J. M. Kelly (2011) Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity. BMC Biotechnol. 11: 103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ries, L., N. J. Belshaw, M. Ilmen, M. E. Penttila, M. Alapuranen, and D. B. Archer (2014) The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl. Microbiol. Biotechnol. 98: 749–762.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, F., X. Zhao, and F. Bai (2018) Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour. Technol. 247: 676–683.

    Article  CAS  PubMed  Google Scholar 

  70. Matsu-Ura, T., A. A. Dovzhenok, S. T. Coradetti, K. R. Subramanian, D. R. Meyer, J. J. Kwon, C. Kim, N. Salomonis, N. L. Glass, S. Lim, and C. I. Hong (2018) Synthetic gene network with positive feedback loop amplifies cellulase gene expression in Neurospora crassa. ACS Synth. Biol. 7: 1395–1405.

    Article  CAS  PubMed  Google Scholar 

  71. Engstrom, M. D. and B. F. Pfleger (2017) Transcription control engineering and applications in synthetic biology. Synth. Syst. Biotechnol. 2: 176–191.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li, Z., G. Liu, and Y. Qu (2017) Improvement of cellulolytic enzyme production and performance by rational designing expression regulatory network and enzyme system composition. Bioresour. Technol. 245: 1718–1726.

    Article  CAS  PubMed  Google Scholar 

  73. Posch, A. E., C. Herwig, and O. Spadiut (2013) Science-based bioprocess design for filamentous fungi. Trends Biotechnol. 31: 37–44.

    Article  CAS  PubMed  Google Scholar 

  74. Ceroni, F. and T. Ellis (2018) The challenges facing synthetic biology in eukaryotes. Nat. Rev. Mol. Cell Biol. 19: 481–482.

    Article  CAS  PubMed  Google Scholar 

  75. Bischof, R. H., J. Ramoni, and B. Seiboth (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb. Cell Fact. 15: 106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Te’o, V. S., A. E. Cziferszky, P. L. Bergquist, and K. M. Nevalainen (2000) Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiol. Lett. 190: 13–19.

    Article  PubMed  Google Scholar 

  77. Sun, A., R. Peterson, J. Te’o, and H. Nevalainen (2016) Expression of the mammalian peptide hormone obestatin in Trichoderma reesei. N. Biotechnol. 33: 99–106.

    Article  CAS  PubMed  Google Scholar 

  78. Fang, H., R. Zhao, C. Li, and C. Zhao (2019) Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability. Microb. Cell Fact. 18: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Seo, S. W., J. S. Yang, I. Kim, J. Yang, B. E. Min, S. Kim, and G. Y. Jung (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng. 15: 67–74.

    Article  CAS  PubMed  Google Scholar 

  80. Ding, N., Z. Yuan, X. Zhang, J. Chen, S. Zhou, and Y. Deng (2020) Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor. Nucleic Acids Res. 48: 10602–10613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ning, W., J. Fei, and R. L. Gonzalez Jr. (2014) The ribosome uses cooperative conformational changes to maximize and regulate the efficiency of translation. Proc. Natl. Acad. Sci. USA. 111: 12073–12078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Meyer, V. (2008) Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol. Adv. 26: 177–185.

    Article  CAS  PubMed  Google Scholar 

  83. Ouedraogo, J. P., M. Arentshorst, I. Nikolaev, S. Barends, and A. F. J. Ram (2016) I-SceI enzyme mediated integration (SEMI) for fast and efficient gene targeting in Trichoderma reesei. J. Biotechnol. 222: 25–28.

    Article  CAS  PubMed  Google Scholar 

  84. Guangtao, Z., L. Hartl, A. Schuster, S. Polak, M. Schmoll, T. Wang, V. Seidl, and B. Seiboth (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J. Biotechnol. 139: 146–151.

    Article  CAS  PubMed  Google Scholar 

  85. Seidl, V., C. Seibel, C. P. Kubicek, and M. Schmoll (2009) Sexual development in the industrial workhorse Trichoderma reesei. Proc. Natl. Acad. Sci. USA. 106: 13909–13914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schuster, A., K. S. Bruno, J. R. Collett, S. E. Baker, B. Seiboth, C. P. Kubicek, and M. Schmoll (2012) A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol. Biofuels. 5: 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, R., L. Chen, Y. Jiang, Z. Zhou, and G. Zou (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov. 1: 15007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matsu-Ura, T., M. Baek, J. Kwon, and C. Hong (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol. Biotechnol. 2: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  89. He, R., W. Guo, L. Wang, and D. Zhang (2015) Construction of an efficient RNAi system in the cellulolytic fungus Trichoderma reesei. J. Microbiol. Methods. 108: 70–73.

    Article  CAS  PubMed  Google Scholar 

  90. Brody, H. and S. Maiyuran (2009) RNAi-mediated gene silencing of highly expressed genes in the industrial fungi Trichoderma reesei and Aspergillus niger. Ind. Biotechnol. 5: 53–60.

    Article  CAS  Google Scholar 

  91. Thomson, J. G. and D. W. Ow (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis. 44: 465–476.

    Article  CAS  PubMed  Google Scholar 

  92. Borin, G. P., C. C. Sanchez, E. S. de Santana, G. K. Zanini, R. A. C. Dos Santos, A. de Oliveira Pontes, A. T. de Souza, R. M. M. T. S. Dal’Mas, D. M. Riano-Pachon, G. H. Goldman, and J. V. C. Oliveira (2017) Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics. 18: 501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Adav, S. S., L. T. Chao, and S. K. Sze (2012) Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol. Cell. Proteomics. 11: M111.012419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. da Silva, A. J., D. P. Gómez-Mendoza, M. Junqueira, G. B. Domont, R. M. L. Queiroz, M. V. de Sousa, E. X. F. Filho, and C. A. O. Ricart (2015) Secretomic analysis reveals multi-enzymatic complexes in Trichoderma reesei grown in media containing lactose or galactose. Bioenerg. Res. 8: 1906–1911.

    Article  CAS  Google Scholar 

  95. Bengtsson, O., M. Ø. Arntzen, G. Mathiesen, M. Skaugen, and V. G. H. Eijsink (2016) A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. J. Proteomics. 131: 104–112.

    Article  CAS  PubMed  Google Scholar 

  96. Borin, G. P., C. C. Sanchez, A. P. de Souza, E. S. de Santana, A. T. de Souza, A. F. Paes Leme, F. M. Squina, M. Buckeridge, G. H. Goldman, and J. V. C. Oliveira (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS One. 10: e0129275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Li, C., F. Lin, L. Zhou, L. Qin, B. Li, Z. Zhou, M. Jin, and Z. Chen (2017) Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose. Biotechnol. Biofuels. 10: 228.

    Article  PubMed  CAS  Google Scholar 

  98. Ellilä, S., L. Fonseca, C. Uchima, J. Cota, G. H. Goldman, M. Saloheimo, V. Sacon, and M. Siika-aho (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels. 10: 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Callow, N. V., C. S. Ray, M. A. Kelbly, and L. K. Ju (2016) Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzyme Microb. Technol. 82: 8–14.

    Article  CAS  PubMed  Google Scholar 

  100. Xia, Y., L. Yang, and L. Xia (2018) Preparation of a novel soluble inducer by cellobiase-release microcapsules and its application in cellulase production. J. Biotechnol. 279: 22–26.

    Article  CAS  PubMed  Google Scholar 

  101. Xia, Y., L. Yang, and L. Xia (2018) High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase. Process Biochem. 70: 55–60.

    Article  CAS  Google Scholar 

  102. Liming, X. and S. Xueliang (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour. Technol. 91: 259–262.

    Article  PubMed  CAS  Google Scholar 

  103. Xia, L. and P. Cen (1999) Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem. 34: 909–912.

    Article  CAS  Google Scholar 

  104. Ahamed, A. and P. Vermette (2010) Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochem. Eng. J. 49: 379–387.

    Article  CAS  Google Scholar 

  105. Peciulyte, A., G. E. Anasontzis, K. Karlström, P. T. Larsson, and L. Olsson (2014) Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet. Biol. 72: 64–72.

    Article  CAS  PubMed  Google Scholar 

  106. Yu, L., Y. Chao, P. Wensel, and S. Chen (2012) Hydrodynamic and kinetic study of cellulase production by Trichoderma reesei with pellet morphology. Biotechnol. Bioeng. 109: 1755–1768.

    Article  CAS  PubMed  Google Scholar 

  107. Bannari, R., A. Bannari, P. Vermette, and P. Proulx (2012) A model for cellulase production from Trichoderma reesei in an airlift reactor. Biotechnol. Bioeng. 109: 2025–2038.

    Article  CAS  PubMed  Google Scholar 

  108. Liu, G., J. Zhang, and J. Bao (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst. Eng. 39: 133–140.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our research was supported by Natural Science Foundation of China (NSFC No. 22007079 and No.21808186), the General Grant for Young Scholar (2018JQ2022) and the second-class General Postdoctoral Grant (2017BSHEDZZ100) from Shaanxi Province, the Special Funding and first-class General Financial Grants from the China Postdoctoral Science Foundation (2018T111102 and 2016M600815) and the Start-up Fund for Talent Introduction (Z111021602) from Northwest A&F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Fang.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Li, C., Zhao, J. et al. Biotechnological Advances and Trends in Engineering Trichoderma reesei towards Cellulase Hyperproducer. Biotechnol Bioproc E 26, 517–528 (2021). https://doi.org/10.1007/s12257-020-0243-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0243-y

Keywords

Navigation