Skip to main content
Log in

Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes for Angiogenesis

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

We demonstrated the effects of exosomes secreted by cardiac mesenchymal stem cells (C-MSC-Exo) in protecting acute ischemic myocardium from reperfusion injury. To investigate the effect of exosomes from C-MSC on angiogenesis, we injected C-MSC-Exo or PBS intramuscularly into ischemic hind limb. Blood perfusion of limb was evaluated by laser Doppler Imaging. We observed that ischemic limb treated with C-MSC-Exo exhibits improved blood perfusion compared to ischemic limb treated with PBS at 2 weeks and 1 month after induction of limb ischemia. To explore the potential mechanisms underlying C-MSC-Exo’s angiogenetic effect, we performed microRNA array analysis and identify mmu-miR-7116-5p as the most abundant enriched miRNA detected in C-MSC-Exo. Bioinformatics’ analysis shows that miR-7116-5p negatively regulates protein polyubiquitination. In conclusion, our study demonstrated that intramuscular delivery of C-MSC-Exo after limb ischemia improves blood perfusion, and we identified the most abundant miRNAs that are preferentially enriched in C-MSC-Exo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gaziano, T. A., Bitton, A., Anand, S., Abrahams-Gessel, S., & Murphy, A. (2010). Growing epidemic of coronary heart disease in low- and middle-income countries. Current Problems in Cardiology, 35, 72–115. https://doi.org/10.1016/j.cpcardiol.2009.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xin, M., Olson, E. N., & Bassel-Duby, R. (2013). Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nature Reviews. Molecular Cell Biology, 14, 529–541. https://doi.org/10.1038/nrm3619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinhauser, M. L., & Lee, R. T. (2011). Regeneration of the heart. EMBO Mol Med, 3, 701–712. https://doi.org/10.1002/emmm.201100175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Domenech, M., Polo-Corrales, L., Ramirez-Vick, J. E., & Freytes, D. O. (2016). Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds? Tissue Engineering. Part B, Reviews, 22, 438–458. https://doi.org/10.1089/ten.TEB.2015.0523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Z., et al. (2018). Regenerative Therapy for Cardiomyopathies. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-018-9807-z.

  6. Foussas, S. G., & Tsiaousis, G. Z. (2008). Revascularization treatment in patients with coronary artery disease. Hippokratia, 12, 3–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Loffler, A. I., & Bourque, J. M. (2016). Coronary Microvascular Dysfunction, Microvascular Angina, and Management. Current Cardiology Reports, 18, 1. https://doi.org/10.1007/s11886-015-0682-9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Awada, H. K., Hwang, M. P., & Wang, Y. (2016). Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials, 82, 94–112. https://doi.org/10.1016/j.biomaterials.2015.12.025.

    Article  CAS  PubMed  Google Scholar 

  9. Djohan, A. H., Sia, C. H., Lee, P. S., & Poh, K. K. (2018). Endothelial Progenitor Cells in Heart Failure: an Authentic Expectation for Potential Future Use and a Lack of Universal Definition. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-018-9810-4.

  10. Tang, Y. L., et al. (2013). Cardiac-derived stem cell-based therapy for heart failure: progress and clinical applications. Experimental Biology and Medicine (Maywood, N.J.), 238, 294–300. https://doi.org/10.1177/1535370213477982.

    Article  CAS  Google Scholar 

  11. Ruan, X. F., et al. (2018). Exosomes from Suxiao Jiuxin pill-treated cardiac mesenchymal stem cells decrease H3K27 demethylase UTX expression in mouse cardiomyocytes in vitro. Acta Pharmacologica Sinica, 39, 579–586. https://doi.org/10.1038/aps.2018.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruan, X. F., et al. (2018). Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro. Acta Pharmacologica Sinica, 39, 569–578. https://doi.org/10.1038/aps.2018.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, L., et al. (2012). The role of notch 1 activation in cardiosphere derived cell differentiation. Stem Cells and Development, 21, 2122–2129. https://doi.org/10.1089/scd.2011.0463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, L., et al. (2014). Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts. PloS One, 9, e107841. https://doi.org/10.1371/journal.pone.0107841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klimczak, A., & Kozlowska, U. (2016). Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Homeostasis. Stem Cells International, 2016, 4285215. https://doi.org/10.1155/2016/4285215.

    Article  CAS  PubMed  Google Scholar 

  16. Tang, Y. L., et al. (2004). Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regulatory Peptides, 117, 3–10.

    Article  CAS  PubMed  Google Scholar 

  17. Tang, Y. L., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg, 80, 229–236; discussion 236-227. https://doi.org/10.1016/j.athoracsur.2005.02.072.

    Article  PubMed  Google Scholar 

  18. Zhang, L., et al. (2014). Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: improving the safety of iPS cell transplantation to myocardium. Cell Cycle, 13, 762–771. https://doi.org/10.4161/cc.27677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, L., et al. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 431, 566–571. https://doi.org/10.1016/j.bbrc.2013.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, P., et al. (2018). Serum Exosomes Attenuate H2O2-Induced Apoptosis in Rat H9C2 Cardiomyocytes via ERK1/2. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-018-9791-3.

  21. Sahoo, S., et al. (2011). Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res, 109, 724–728. https://doi.org/10.1161/CIRCRESAHA.111.253286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan, M., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117, 52–64. https://doi.org/10.1161/CIRCRESAHA.117.305990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kishore, R., & Khan, M. (2016). More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair. Circulation Research, 118, 330–343. https://doi.org/10.1161/CIRCRESAHA.115.307654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 38, 212–215. https://doi.org/10.1093/eurheartj/ehw324.

    Article  PubMed  Google Scholar 

  25. Lu, M., et al. (2018). The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-018-9796-y.

  26. Chen, L., et al. (2013). Two-step protocol for isolation and culture of cardiospheres. Methods in molecular biology (Clifton, N.J.), 1036, 75–80. https://doi.org/10.1007/978-1-62703-511-8_6.

    Article  CAS  Google Scholar 

  27. Tang, Y. L., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104, 1209–1216. https://doi.org/10.1161/CIRCRESAHA.109.197723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y., et al. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69. https://doi.org/10.1016/j.ijcard.2015.05.020.

    Article  PubMed  Google Scholar 

  29. Chen, Z., et al. (2017). Isolation of Extracellular Vesicles from Stem Cells. Methods in Molecular Biology (Clifton, N.J.), 1660, 389–394. https://doi.org/10.1007/978-1-4939-7253-1_32.

    Article  CAS  Google Scholar 

  30. Helwa, I., et al. (2017). A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PloS One, 12, e0170628. https://doi.org/10.1371/journal.pone.0170628.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, J., et al. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics, 13, 17–24. https://doi.org/10.1016/j.gpb.2015.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pathan, M., et al. (2017). A novel community driven software for functional enrichment analysis of extracellular vesicles data. Journal of Extracellular Vesicles, 6, 1321455. https://doi.org/10.1080/20013078.2017.1321455.

    Article  PubMed  PubMed Central  Google Scholar 

  33. He, Q., Wang, Q., Yuan, C., & Wang, Y. (2017). Downregulation of miR-7116-5p in microglia by MPP(+) sensitizes TNF-alpha production to induce dopaminergic neuron damage. Glia, 65, 1251–1263. https://doi.org/10.1002/glia.23153.

    Article  PubMed  Google Scholar 

  34. Ni, J., Sun, Y., & Liu, Z. (2018). The Potential of Stem Cells and Stem Cell-Derived Exosomes in Treating Cardiovascular Diseases. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-018-9799-8.

  35. Campbell, C. R., Berman, A. E., Weintraub, N. L., & Tang, Y. L. (2016). Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Medical Hypotheses, 88, 6–9. https://doi.org/10.1016/j.mehy.2015.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pigati, L., et al. (2010). Selective release of microRNA species from normal and malignant mammary epithelial cells. PloS One, 5, e13515. https://doi.org/10.1371/journal.pone.0013515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Villarroya-Beltri, C., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980. https://doi.org/10.1038/ncomms3980.

    Article  CAS  PubMed  Google Scholar 

  38. Santangelo, L., et al. (2016). The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting. Cell Reports, 17, 799–808. https://doi.org/10.1016/j.celrep.2016.09.031.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, X., Yuan, W., Yang, L., Li, J., & Cai, J. (2018). miRNA Profiling of Exosomes from Spontaneous Hypertensive Rats Using Next-Generation Sequencing. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-017-9784-7.

Download references

Funding

Y. Tang was partially supported by the American Heart Association. GRNT31430008, NIH-AR070029, NIH-HL086555, NIH-HL134354.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gengshan Ma or Yaoliang Tang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Animals were treated according to the approved protocols and animal welfare regulations of the Institutional Animal Care and Use Committee of the Medical College of Georgia, Augusta University. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, C., Li, Y., Shen, Y. et al. Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes for Angiogenesis. J. of Cardiovasc. Trans. Res. 11, 429–437 (2018). https://doi.org/10.1007/s12265-018-9824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9824-y

Keywords

Navigation