Skip to main content
Log in

Triterpenoid saponins from the roots of Rosa rugosa Thunb. as rat intestinal sucrase inhibitors

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Medicinal plants constitute an important source of potential therapeutic agents for diabetes. The purpose of present study is to investigate the effect of root extract of Rosa rugosa Thunb. on inhibition of sucrase related to diabetes mellitus (DM). Bioassay-guided fractionation of the methanol extract led to the identification of 13 triterpenoid saponins (113). Their structures were elucidated on the basis of extensive spectroscopic analysis, including 1D, 2D NMR, and MS. The n-butanol fraction showed potent rat intestinal sucrase inhibitory activity with value of 87.62 ± 5.84 % inhibition compared to the positive control acarbose (50.96 ± 2.97 % inhibition at 0.02 mM). Subsequently, compounds 1113 (1.0 mM) exhibited significant sucrase inhibitory activity, with inhibition percentage values of 41.17 ± 3.52, 46.80 ± 4.00, and 39.39 ± 4.19 %, respectively. Whereas, compounds 26, 8, and 10 showed moderate sucrase inhibitory activity (ranging from 13.26 ± 7.00 to 32.08 ± 6.04 % inhibition) at a same concentration. The data provide a starting point for creating new sucrase inhibitors, which may be useful for the development of effective therapies for the treatment of DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • An, H.J., I.T. Kim, H.J. Park, H.M. Kim, J.H. Choi, and K.T. Lee. 2011. Tormentic acid, a triterpenoid saponin, isolated from Rosa rugosa, inhibited LPS-induced iNOS, COX-2, and TNF-α expression through inactivation of the nuclear factor-κB pathway in RAW 264.7 macrophages. International Immunopharmacology 11: 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Benalla, W., S. Bellahcen, and M. Bnouham. 2010. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Current Diabetes Reviews 6: 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Clifford, B., and D. Caroline. 1989. Traditional plant medicines as treatments for diabetes. Diabetes Care 12: 553–564.

    Article  Google Scholar 

  • Ekabo, O.A., and N.R. Farnsworth. 1996. Antifungal and molluscicidal saponins from Serjania salzmanniana. Journal of Natural Products 59: 431–435.

    Article  PubMed  CAS  Google Scholar 

  • Feng, S., L. Song, Y. Liu, F. Lai, G. Zuo, G. He, M. Chen, and D. Huang. 2013. Hypoglycemic activities of commonly-used traditional Chinese herbs. The American Journal Chinese Medicine 41: 849–864.

    Article  Google Scholar 

  • Fu, M., T.B. Ng, Y. Jiang, Z.F. Pi, Z.K. Liu, L. Li, and F. Liu. 2006. Compounds from rose (Rosa rugosa) flowers with human immunodeficiency virus type 1 reverse transcriptase inhibitory activity. Journal of Pharmacy and Pharmacology 58: 1275–1280.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X.M., L.D. Shu, L.Y. Yang, Y.Q. Shen, Y.J. Zhang, and Q.F. Hu. 2013. Phenylethanoids from the flowers of Rosa rugosa and their biological activities. The Bulletin of the Korean Chemical Society 34: 246–248.

    Article  Google Scholar 

  • Gershell, L. 2005. Type 2 diabetes market. Nature Reviews Drug Discovery 4: 367–368.

    Article  PubMed  CAS  Google Scholar 

  • Guo, D., L. Xu, X. Cao, Y. Guo, Y. Ye, C.O. Chan, D.K.W. Mok, Z. Yu, and S. Chen. 2011. Anti-inflammatory activities and mechanisms of action of the petroleum ether fraction of Rosa multiflora Thunb. hips. Journal of Ethnopharmacology 138: 717–722.

    Article  PubMed  Google Scholar 

  • Hashidoko, Y., S. Tahara, and J. Mizutani. 1993. Sesquiterpenoids from Rosa rugosa leaves. Phytochemistry 32: 387–390.

    Article  CAS  Google Scholar 

  • Holman, R.E., C.A. Culli, and R.C. Turner. 1999. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years. Diabetes Care 22: 960–964.

    Article  PubMed  CAS  Google Scholar 

  • Horváth, G., P. Molnár, E.R. Turcsi, J. Deli, M. Kawase, K. Satoh, T. Tanaka, S. Tani, H. Sakagami, N. Gyémánt, and J. Molnár. 2012. Carotenoid composition and in vitro pharmacological activity of rose hips. Acta Biochimica Polonica 59: 129–132.

    PubMed  Google Scholar 

  • Hshidoko, Y. 1996. The phytochemistry of Rosa rugosa. Phytochemistry 43: 535–549.

    Article  Google Scholar 

  • Jabeen, B., N. Riaz, M. Saleem, M.A. Naveed, M. Ashraf, U. Alam, H.M. Rafiq, R.B. Tareen, and A. Jabbar. 2013. Isolation of natural compounds from Phlomis stewartii showing α-glucosidase inhibitory activity. Phytochemistry 96: 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Jia, Z.J., X.Q. Liu, and Z.M. Liu. 1993. Triterpenoids from Sanguisoraba alpine. Phytochemistry 32: 155–159.

    Article  Google Scholar 

  • Kang, S.S. 1989. Saponins from the roots of Pulsatilla koreana. Archives of Pharmacal Research 12: 42–47.

    Article  CAS  Google Scholar 

  • Kang, S.S., and J.S. Kim. 1997. A triterpenoid saponin from Patrinia scabiosaefolia. Journal of Natural Products 60: 1052–1060.

    Article  Google Scholar 

  • Kang, W.Y., Y.L. Song, and L. Zhang. 2011. α-Glucosidase inhibitory and antioxidant properties and antidiabetic activity of Hypericum ascyron L. Medicinal Chemistry Research 20: 809–816.

    Article  CAS  Google Scholar 

  • Kavishankar, G.B., N. Lakshmidevi, S.M. Murthy, H.S. Prakash, and S.R. Niranjana. 2011. Diabetes and medicinal plants: A review. International Journal of Pharmacy and Biomedical Sciences 2: 65–80.

    Google Scholar 

  • Kimura, A., J.H. Lee, I.S. Lee, H.S. Lee, K.H. Park, S. Chiba, and D. Kim. 2004. Two potent competitive inhibitors discriminating α-glucosidase family I from family II. Carbohydrate Research 339: 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., S. Narwal, V. Kumar, and O. Prakash. 2011. α-Glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews 5: 19–29.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kwon, Y.I., D.A. Vattem, and K. Shetty. 2006. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition 15: 107–118.

    PubMed  Google Scholar 

  • Lai, Y.C., C.K. Chen, S.F. Tsai, and S.S. Lee. 2012. Triterpenes as α-glucosidase inhibitors from Fagus hayatae. Phytochemistry 74: 206–211.

    Article  PubMed  CAS  Google Scholar 

  • Lam, S.H., J.M. Chen, C.J. Kang, C.H. Chen, and S.S. Lee. 2008. α-Glucosidase inhibitors from the seeds of Syagrus romanzoffiana. Phytochemistry 69: 1173–1178.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.H., M.G. Jung, H.B. Kang, K.C. Choi, S. Haam, W. June, Y.J. Kim, H.Y. Cho, and H.G. Yoon. 2008. Effect of anti-histone acetyltransferase activity from Rosa rugosa Thunb. (Rosaceae) extracts on androgen receptor-mediated transcriptional regulation. Journal of Ethnopharmacology 118: 412–417.

    Article  PubMed  CAS  Google Scholar 

  • Li, D.Q., J. Zhao, J. Xie, and S.P. Li. 2014. A novel sample preparation and on-line HPLC–DAD–MS/MS–BCD analysis for rapid screening and characterization of specific enzyme inhibitors in herbal extracts: Case study of α-glucosidase. Journal of Pharmaceutical and Biomedical Analysis 88: 130–135.

    Article  PubMed  CAS  Google Scholar 

  • Li, J.R., J. Liu, D.H. He, H.X. Xu, L.S. Ding, W.K. Bao, Z.Q. Zhou, and Y. Zhou. 2013a. Three new phenolic compounds from the leaves of Rosa sericea. Fitoterapia 84: 332–337.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Y. Ding, Y.N. Sun, X.T. Yan, S.Y. Yang, C.W. Choi, J.Y. Cha, Y.M. Lee, and Y.H. Kim. 2013b. Triterpenoid saponins of Pulsatilla koreana root have inhibition effects of tumor necrosis factor-α secretion in lipopolysaccharide-induced RAW264.7 cells. Chemical and Pharmaceutical Bulletin 61: 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Liang, D., and X.P. Cao. 1992. Pomolic acid derivatives from the root of Sanguisorba officinalis. Phytochemistry 31: 1317–1320.

    Article  Google Scholar 

  • Marles, R.J., and N.R. Farnsworth. 1995. Antidiabetic plants and their active constituents. Phytomedicine 2: 137–189.

    Article  PubMed  CAS  Google Scholar 

  • Mimaki, Y., A. Yokosuka, M. Kuroda, M. Hamanaka, C. Sakuma, and Y. Sashida. 2001. New bisdesmosidic triterpene saponins from the roots of Pulsatilla chinensis. Journal of Natural Products 64: 1226–1229.

    Article  PubMed  CAS  Google Scholar 

  • Ochir, S., B. Park, M. Nishizawa, T. Kanazawa, M. Funaki, and T. Yamagishi. 2010. Simultaneous determination of hydrolysable tannins in the petals of Rosa rugosa and allied plants. Journal of Natural Medicines 64: 383–387.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, D.F., L.H. Cazarolli, C. Lavado, V. Mengatto, M.S.R.B. Figueiredo, A. Guedes, M.G. Pizzolatti, and F.R.M.B. Silva. 2011. Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition 27: 1161–1167.

    Article  PubMed  Google Scholar 

  • Saito, S., S. Sumita, N. Tamura, Y. Nagamura, K. Nishida, M. Ito, and I. Ishiguro. 1990. Saponin from the leaves of Aralia elata Seem. Chemical and Pharmaceutical Bulletin 38: 411–414.

    Article  CAS  Google Scholar 

  • Sano, K., S. Sanada, T. Ida, and J. Shoji. 1991. Studies on the constituents of the bark of Kalopanax pictus Nakai. Chemical and Pharmaceutical Bulletin 39: 856–870.

    Google Scholar 

  • Schenkel, P., W. Werner, and K.E. Schulte. 1991. Saponine from Thinouia coriacea. Planta Medica 57: 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Sulborska, A., E.W. Chmielewska, and M. Chwil. 2012. Micromorphology of Rosa rugosa Thunb. Petal epidermis secreting fragrant substances. Acta Agobotanica 65: 21–28.

    Article  Google Scholar 

  • Wei, J.F., Y.B. Zhang, and W.Y. Kang. 2012. Antioxidant and α-glucosidase inhibitory compounds in Lysimachia clethroides. African Journal of Pharmacy and Pharmacology 6: 3230–3234.

    Article  CAS  Google Scholar 

  • Yu, D.J., L.T. Lu, K.J. Guan, and C.L. Li. 1985. Flora reipublicae popularis sinicae, Vol. 37, 385–388. Weberling: Science Press.

    Google Scholar 

  • Zhang, Q., W. Ye, X. Yan, G. Zhu, C.T. Che, and S. Zhao. 2000. Cernuosides A and B, two sucrase inhibitors from Pulsatilla cernua. Journal of Natural Products 63: 276–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Priority Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2009-0093815), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thao, N.P., Luyen, B.T.T., Jo, S.H. et al. Triterpenoid saponins from the roots of Rosa rugosa Thunb. as rat intestinal sucrase inhibitors. Arch. Pharm. Res. 37, 1280–1285 (2014). https://doi.org/10.1007/s12272-014-0384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0384-7

Keywords

Navigation