Skip to main content
Log in

Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Scandium (Sc) contacted n-type carbon nanotube (CNT) field-effected transistors (FETs) with back and top-gate structure have been fabricated, and their stability in air were investigated. It was shown that oxygen and water molecules may affect both the nanotube channel and Sc/nanotube contacts, leading to deteriorated contact quality and device performance. These negative effects associated with the instability of n-type carbon nanotube FETs can be eliminated through passivating the CNT devices by a thin layer of atomic-layer-deposition grown Al2O3 insulator. After passivation, the n-type carbon nanotube FETs are shown to exhibit excellent atmosphere stability even after being tested and exposed to air for over 146 days, and then much smoother output characteristics and reduced gate voltage hysteresis from 1 to 0.1 V were demonstrated when compared with devices without passivation. Lasting power-on tests were also performed on the passivated CNT FETs under large gate stress and high drain current in air for at least 10 h, revealing null device degradation and sometimes even improved performance. These results promise that passivated CNT devices are reliable in air and may be used in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tans, S. J.; Verschueren, A. R.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    Article  CAS  Google Scholar 

  2. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

    Article  CAS  Google Scholar 

  3. Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

    Article  CAS  Google Scholar 

  4. Zhang, Z. Y.; Wang, S.; Peng, L. M. High-performance doping-free carbon-nanotube-based CMOS devices and integrated circuits. Chin. Sci. Bull. 2012, 135–148.

    Google Scholar 

  5. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  CAS  Google Scholar 

  6. Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. Carbon nanotube field-effect transistors with integrated Ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447–450.

    Article  CAS  Google Scholar 

  7. Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Yenilmez, E.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 2004, 4, 1319–1322.

    Article  CAS  Google Scholar 

  8. Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

    Article  CAS  Google Scholar 

  9. Zhang, Z. Y.; Wang, S.; Ding, L.; Liang, X. L.; Pei, T.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y. et al. Self-aligned ballistic N-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 2008, 8, 3696–3701.

    Article  CAS  Google Scholar 

  10. Wang, Z. X.; Xu, H. L.; Zhang, Z. Y.; Wang, S.; Ding, L.; Zeng, Q. L.; Yang, L. J.; Pei, T.; Liang, X. L.; Gao, M. et al. Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics. Nano Lett. 2010, 10, 2024–2030.

    Article  CAS  Google Scholar 

  11. Javey, A.; Wang, Q.; Ural, A.; Li, Y. M.; Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.

    Article  CAS  Google Scholar 

  12. Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456.

    Article  CAS  Google Scholar 

  13. Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.

    Article  CAS  Google Scholar 

  14. Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 2009, 3, 3781–3787.

    Article  CAS  Google Scholar 

  15. Chen, Z. H.; Appenzeller, J.; Lin, Y. M.; Sippel-Oakley, J.; Rinzler, A. G.; Tang, J. Y.; Wind, S. J.; Solomon, P. M.; Avouris, P. An integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735–1735.

    Article  CAS  Google Scholar 

  16. Ding, L.; Zhang, Z. Y.; Liang, S. B.; Pei, T.; Wang, S.; Li, Y.; Zhou, W. W.; Liu, J.; Peng, L. M. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 2012, 3, 677–677.

    Article  Google Scholar 

  17. Ding, L.; Zhang, Z. Y.; Pei, T.; Liang, S. B.; Wang, S.; Zhou, W. W.; Liu, J.; Peng, L. M. Carbon nanotube field-effect transistors for use as pass transistors in integrated logic gates and full subtractor circuits. ACS Nano 2012, 6, 4013–4019.

    Article  CAS  Google Scholar 

  18. Ding, L.; Liang, S. B.; Pei, T.; Zhang, Z. Y.; Wang, S.; Zhou, W. W.; Liu, J.; Peng, L. M. Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V. Appl. Phys. Lett. 2012, 100, 263116.

    Article  Google Scholar 

  19. Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljević, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 2005, 4, 153–158.

    Article  Google Scholar 

  20. Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.

    Article  CAS  Google Scholar 

  21. Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.

    Article  CAS  Google Scholar 

  22. Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

    Article  CAS  Google Scholar 

  23. Bradley, K.; Gabriel, J. C. P.; Star, A.; Grüner, G. Short-channel effects in contact-passivated nanotube chemical sensors. Appl. Phys. Lett. 2003, 83, 3821–3823.

    Article  CAS  Google Scholar 

  24. Kang, D. H.; Park, N.; Ko, J. H.; Bae, E.; Park, W. J. Oxygen-induced P-type doping of a long individual single-walled carbon nanotube. Nanotechnology 2005, 16, 1048–1052.

    Article  CAS  Google Scholar 

  25. Moriyama, N.; Ohno, Y.; Kitamura, T.; Kishimoto, S.; Mizutani, T. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges. Nanotechnology 2010, 21, 165201.

    Article  CAS  Google Scholar 

  26. Kaminishi, D.; Ozaki, H.; Ohno, Y.; Maehashi, K.; Inoue, K.; Matsumoto, K.; Seri, Y.; Masuda, A.; Matsumura, H. Air-stable N-type carbon nanotube field-effect transistors with Si3N4 passivation films fabricated by catalytic chemical vapor deposition. Appl. Phys. Lett. 2005, 86, 113115.

    Article  Google Scholar 

  27. Franklin, A. D.; Tulevski, G. S.; Han, S. J.; Shahrjerdi, D.; Cao, Q.; Chen, H. Y.; Wong, H. S. P.; Haensch, W. Variability in carbon nanotube transistors: Improving device-to-device consistency. ACS Nano 2012, 6, 1109–1115.

    Article  CAS  Google Scholar 

  28. Kim, S. K.; Xuan, Y.; Ye, P. D.; Mohammadi, S.; Back, J. H.; Shim, M. Atomic layer deposited Al2O3 for gate dielectric and passivation layer of single-walled carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 163108.

    Article  Google Scholar 

  29. Kim, H. S.; Jeon, E. K.; Kim, J. J.; So, H. M.; Chang, H.; Lee, J. O.; Park, N. Air-stable N-type operation of Gd-contacted carbon nanotube field effect transistors. Appl. Phys. Lett. 2008, 93, 123106.

    Article  Google Scholar 

  30. Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. N-type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes. Appl. Phys. Lett. 2005, 86, 073105.

    Article  Google Scholar 

  31. Ding, L.; Wang, S.; Zhang, Z. Y.; Zeng, Q. S.; Wang, Z. X.; Pei, T.; Yang, L. J.; Liang, X. L.; Shen, J.; Chen, Q. et al. Y-contacted high-performance N-type single-walled carbon nanotube field-effect transistors: Scaling and comparison with Sc-contacted devices. Nano Lett. 2009, 9, 4209–4214.

    Article  CAS  Google Scholar 

  32. Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 2012, 100, 1720–1749.

    Article  Google Scholar 

  33. Shahrjerdi, D.; Franklin, A. D.; Oida, S.; Tulevski, G. S.; Han, S. J.; Hannon, J. B.; Haensch, W. High device yield carbon nanotube NFETs for high-performance logic applications. 2011, 23.3.1–23.3.4.

    Google Scholar 

  34. Cui, X. D.; Freitag, M.; Martel, R.; Brus, L.; Avouris, P. Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett. 2003, 3, 783–787.

    Article  CAS  Google Scholar 

  35. Wilk, G. D.; Wallace, R. M.; Anthony, J. M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275.

    Article  CAS  Google Scholar 

  36. Kar, S.; Vijayaraghavan, A.; Soldano, C.; Talapatra, S.; Vajtai, R.; Nalamasu, O.; Ajayan, P. M. Quantitative analysis of hysteresis in carbon nanotube field-effect devices. Appl. Phys. Lett. 2006, 89, 132118.

    Article  Google Scholar 

  37. Estrada, D.; Dutta, S.; Liao, A.; Pop, E. Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 2010, 21, 085702.

    Article  Google Scholar 

  38. Wang, S.; Sellin, P. Pronounced hysteresis and high charge storage stability of single-walled carbon nanotube-based field-effect transistors. Appl. Phys. Lett. 2005, 87, 133117.

    Article  Google Scholar 

  39. Jin, S. H.; Islam, A. E.; Kim, T. I.; Kim, J. H.; Alam, M. A.; Rogers, J. A. Sources of hysteresis in carbon nanotube field-effect transistors and their elimination via methylsiloxane encapsulants and optimized growth procedures. Adv. Funct. Mater. 2012, 22, 2276–2284.

    Article  CAS  Google Scholar 

  40. Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Zhang or Lianmao Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S., Zhang, Z., Pei, T. et al. Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors. Nano Res. 6, 535–545 (2013). https://doi.org/10.1007/s12274-013-0330-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0330-x

Keywords

Navigation