Skip to main content
Log in

Cotunneling transport in ultra-narrow gold nanowire bundles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We investigate the charge transport in close-packed ultra-narrow (1.5 nm diameter) gold nanowires stabilized by oleylamine ligands. We give evidence of charging effects in the weakly coupled one-dimensional (1D) nanowires, monitored by the temperature and the bias voltage. At low temperature, in the Coulomb blockade regime, the current flow reveals an original cooperative multi-hopping process between 1D-segments of Au-NWs, minimising the charging energy cost. Above the Coulomb blockade threshold voltage and at high temperature, the charge transport evolves into a sequential tunneling regime between the nearestnanowires. Our analysis shows that the effective length of the Au-NWs inside the bundle is similar to the 1D localisation length of the electronic wave function (of the order of 120 nm ± 20 nm), but almost two orders of magnitude larger than the diameter of the nanowire. This result confirms the high structural quality of the Au-NW segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imry, Y. Introduction to Mesoscopic Physics; Oxford University Press: Oxford, 2002.

    Google Scholar 

  2. Appell, D. Nanotechnology: Wired for success. Nature 2002, 419, 553–555.

    Article  CAS  Google Scholar 

  3. Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.

    Article  CAS  Google Scholar 

  4. Wang, Z. L. Nanowires and Nanobelts: Materials, Properties and Devices; Kluwer Academic Publishers: Boston, 2003.

    Book  Google Scholar 

  5. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

    Article  CAS  Google Scholar 

  6. Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

    Article  CAS  Google Scholar 

  7. Patolsky, F.; Lieber, C. M. Nanowire nanosensors. Mater. Today 2005, 8, 20–28.

    Article  CAS  Google Scholar 

  8. Barrelet, C. J.; Greytak, A. B.; Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 2004, 4, 1981–1985.

    Article  CAS  Google Scholar 

  9. Shi, P.; Zhang, J. Y.; Lin, H. Y.; Bohm, P. W. Effect of molecular adsorption on the electrical conductance of single Au nanowires fabricated by electron-beam lithography and focused ion beam etching. Small 2010, 6, 2598–2063.

    Article  CAS  Google Scholar 

  10. Jacke, S.; Plaza, J. L.; Wilcoxon, J. P.; Palmer, R. E.; Beecher, P.; De Marzi, G.; Redmond, G.; Quinn, A. J.; Chen, Y. Charge transport in nanocrystal wires created by direct electron beam writing. Micro Nano Lett. 2010, 5, 274–277.

    Article  CAS  Google Scholar 

  11. Song, J. H.; Wu, Y.; Messer, B.; Kind, H.; Yang, P. Metal nanowire formation using Mo3Se3-as reducing and sacrificing templates. J. Am. Chem. Soc. 2001, 123, 10397–10398.

    Article  CAS  Google Scholar 

  12. Liu, J.; Duan, J. L.; Toimil-Morales, M. E.; Karim, S.; Cornelius, T. W.; Dobrey, D.; Yao, H. J.; Sun, Y. M.; Hou, M. D.; Mo, D.; Wang, Z. G.; Neumann, R. Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: The influence of deposition parameters. Nanotechnology 2006, 17, 1922.

    Article  CAS  Google Scholar 

  13. Halder, A.; Ravishankar, R. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854–1858.

    Article  CAS  Google Scholar 

  14. Pazos-Perez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzan, L. M.; Giersig, M. Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 2008, 24, 9855–9860.

    Article  CAS  Google Scholar 

  15. Lagos, M. J.; Sato, F.; Autreto, P. A. S.; Galvao, D. S.; Rodrigues, V.; Ugarte, D. Temperature effects on the atomic arrangement and conductance of atomic-size gold nanowires generated by mechanical stretching. Nanotechnology 2010, 21, 485702.

    Article  CAS  Google Scholar 

  16. Chen, J. Y.; Wiley, B. J.; Xia, Y. N. One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications. Langmuir 2007, 23, 4120–4129.

    Article  CAS  Google Scholar 

  17. Huo, Z. Y.; Tsung, Ch-K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041–2044.

    Article  CAS  Google Scholar 

  18. Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: New York, 1979.

    Google Scholar 

  19. Shklovskii, B. I.; Efros, A. L. Electronic Properties of Doped Semiconductors; Springer: London, 1984.

    Book  Google Scholar 

  20. Pollak, M.; Shkovskii, B. I. Hopping Transport in Solids; North-Holland: New York, 1991.

    Google Scholar 

  21. Aleshin, A. N.; Lee, J. Y.; Chu, S. W.; Lee, S. W.; Kim, B.; Ahn, S. J.; Park, Y. W. Hopping conduction in polydiacetylene single crystals. Phys. Rev. B 2004, 69, 214203.

    Article  Google Scholar 

  22. Sheng, P.; Abeles, B.; Arie, Y. Hopping conductivity in granular metals. Phys. Rev. Lett. 1973, 31, 44–47.

    Article  CAS  Google Scholar 

  23. Mitani, S.; Takahashi, S.; Takanashi, K.; Yakushiji, K.; Maekawa, S.; Fujimori, H. Enhanced magnetoresistance in insulating granular systems: Evidence for higher-order tunneling. Phys. Rev. Lett. 1998, 81, 2799–2802.

    Article  CAS  Google Scholar 

  24. Yu, D.; Wang, C.; Wehrenberg, B. L.; Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 2004, 92, 216802.

    Article  Google Scholar 

  25. Liao, Z. M.; Xun, J.; Yu, D. P. Electron transport in an array of platinum quantum dots. Phys. Lett. A 2005, 345, 386–390.

    Article  CAS  Google Scholar 

  26. Romero, H. E.; Drndic, M. Coulomb blockade and hopping conduction in PbSe quantum dots. Phys. Rev. Lett. 2005, 95, 156801.

    Article  Google Scholar 

  27. Dunford, J. L.; Suganuma, Y.; Dhirani, A. A.; Statt, B. Quasilocalized hopping in molecularly linked Au nanoparticle arrays near the metal-insulator transition. Phys. Rev. B 2005, 72, 075441.

    Article  Google Scholar 

  28. Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M. Granular electronic systems. Rev. Mod. Phys. 2007, 79, 469–518.

    Article  CAS  Google Scholar 

  29. Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M. Coulomb effects and hopping transport in granular metals. Phys. Rev. B 2005, 72, 125121.

    Article  Google Scholar 

  30. Averin, D. V.; Nazarov, Y. V. Virtual electron diffusion during quantum tunneling of the electric charge. Phys. Rev. Lett. 1990, 65, 2446–2449.

    Article  Google Scholar 

  31. Tran, T. B.; Beloborodov, I. S.; Lin, X. M.; Bigini, T. P.; Vinokur, V. M.; Jaeger, H. M. Multiple cotunneling in large quantum dot arrays. Phys. Rev. Lett. 2005, 95, 076806.

    Article  CAS  Google Scholar 

  32. Tran, T. B.; Beloborodov, I. S.; Lin, X. M.; Hu, J.; Lin, X. M.; Rosenbaum, T. F.; Jaeger, H. M. Sequential tunneling and inelastic cotunneling in nanoparticle arrays. Phys. Rev. B 2008, 78, 075437.

    Article  Google Scholar 

  33. Parthasarathy, R.; Lin, X. M.; Elteto, K.; Rosenbaum, T. F.; Jaeger, H. M. Percolating through networks of random thresholds: Finite temperature electron tunneling in metal nanocrystal arrays. Phys. Rev. Lett. 2004, 92, 076801.

    Article  Google Scholar 

  34. Middleton, A. A.; Wingreen, N. S. Collective transport in arrays of small metallic dots. Phys. Rev. Lett. 1993, 71, 3198–3201.

    Article  CAS  Google Scholar 

  35. Parthasarathy, R.; Lin, X. M.; Jaeger, H. M. Electronic transport in metal nanocrystal arrays: The effect of structural disorder on scaling behavior. Phys. Rev. Lett. 2001, 87, 186807.

    Article  Google Scholar 

  36. The mutual capacitance between parallel NWs is estimated to 0.8 aF, roughly 5 times smaller than the geometrical capacitance defined in Eq. (2).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Raquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loubat, A., Escoffier, W., Lacroix, LM. et al. Cotunneling transport in ultra-narrow gold nanowire bundles. Nano Res. 6, 644–651 (2013). https://doi.org/10.1007/s12274-013-0340-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0340-8

Keywords

Navigation