Skip to main content
Log in

Aqueous self-assembly and surface-functionalized nanodots for live cell imaging and labeling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles have enormous potential for bioimaging and biolabeling applications, in which conventional organically based fluorescent labels degrade and fail to provide long-term tracking. Thus, the development of approaches to make fluorescent probes water soluble and label cells efficient is desirable for most biological applications. Here, we report on the fabrication and characterization of self-assembled nanodots (SANDs) from 3-aminopropyltriethoxysilane (APTES) as a probe for protein labeling. We show that fluorescent SAND probes exhibit both bright photoluminescence and biocompatibility in an aqueous environment. Selective in vitro imaging using protein and carbohydrate labeling of hepatoma cell lines are demonstrated using biocompatible SANDs conjugated with avidin and galactose, respectively. Cytotoxicity tests show that conjugated SAND particles have negligible effects on cell proliferation. Unlike other synthetic systems that require multistep treatments to achieve robust surface functionalization and to develop flexible bioconjugation strategies, our results demonstrate the versatility of this one-step SAND fabrication method for creating multicolor fluorescent probes with the tailored functionalities, efficient emission, as well as excellent biocompatibility, required for broad biological use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, R. E.; Smith, A. M.; Nie, S. M. Quantum dots in biology and medicine. Physica E 2004, 25, 1–12.

    Article  Google Scholar 

  2. Jaiswal, J. K.; Goldman, E. R.; Mattoussi, H.; Simon, S. M. Use of quantum dots for live cell imaging. Nat. Methods 2004, 1, 73–78.

    Article  Google Scholar 

  3. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.

    Article  Google Scholar 

  4. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Article  Google Scholar 

  5. Smith, A. M.; Dave, S.; Nie, S. M.; True, L.; Gao, X. H. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diagn. 2006, 6, 231–244.

    Article  Google Scholar 

  6. Selvan, S. T.; Tan, T. T. Y.; Yi, D. K.; Jana, N. R. Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 2010, 26, 11631–11641.

    Article  Google Scholar 

  7. King-Heiden, T. C.; Wiecinski, P. N.; Mangham, A. N.; Metz, K. M.; Nesbit, D.; Pedersen, J. A.; Hamers, R. J.; Heideman, W.; Peterson, R. E. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol. 2009, 43, 1605–1611.

    Article  Google Scholar 

  8. Lin, P.-Y.; Hsieh, C.-W.; Kung, M.-L.; Hsieh, S. Substrate-free self-assembled SiOx-core nanodots from alkylalkoxysilane as a multicolor photoluminescence source for intravital imaging. Sci. Rep. 2013, 3, 1703.

    Google Scholar 

  9. Sun, X. P.; Wei, W. T. Electrostatic-assembly-driven formation of micrometer-scale supramolecular sheets of (3-aminopropyl)triethoxysilane(APTES)-HAuCl4 and their subsequent transformation into stable APTES bilayer-capped gold nanoparticles through a thermal process. Langmuir 2010, 26, 6133–6135.

    Article  Google Scholar 

  10. Chai, C.; Lee, J.; Takhistov, P. Direct detection of the biological toxin in acidic environment by electrochemical impedimetric immunosensor. Sensors 2010, 10, 11414–11427.

    Article  Google Scholar 

  11. Faucheux, N.; Schweiss, R.; Lützow, K.; Werner, C.; Groth, T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 2004, 25, 2721–2730.

    Article  Google Scholar 

  12. Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85.

    Article  Google Scholar 

  13. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356.

    Article  Google Scholar 

  14. Aissaoui, N.; Bergaoui, L.; Landoulsi, J.; Lambert, J.-F.; Boujday, S. Silane layers on silicon surfaces: Mechanism of interaction, stability, and influence on protein adsorption. Langmuir 2012, 28, 656–665.

    Article  Google Scholar 

  15. Llewellyn, N. M.; Spencer, J. B. Chemoenzymatic acylation of aminoglycoside antibiotics. Chem. Commun. 2008, 32, 3786–3788.

    Article  Google Scholar 

  16. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 2001, 105, 8861–8871.

    Article  Google Scholar 

  17. Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Rädler, J.; Natile, G.; Parak, W. J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004, 4, 703–707.

    Article  Google Scholar 

  18. Chen, P.-C.; Chen, Y.-N.; Hsu, P.-C.; Shih, C.-C.; Chang, H.-T. Photoluminescent organosilane-functionalized carbon dots as temperature probes. Chem. Commun. 2013, 49, 1639–1641.

    Article  Google Scholar 

  19. Wang, F.; Xie, Z.; Zhang, H.; Liu, C.-Y.; Zhang, Y.-G. Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 2011, 21, 1027–1031.

    Article  Google Scholar 

  20. Cheang, T.-Y.; Tang, B.; Xu, A.-W.; Chang, G.-Q.; Hu, Z.-J.; He, W.-L.; Xing, Z.-H.; Xu, J.-B.; Wang, M.; Wang, S.-M. Promising plasmid DNA vector based on APTES-modified silica nanoparticles. Int. J. Nanomed. 2012, 7, 1061–1067.

    Google Scholar 

  21. Lu, G. H.; Mao, S.; Park, S. J.; Ruoff, R. S.; Chen, J. H. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res. 2009, 2, 192–200.

    Article  Google Scholar 

  22. Kim, J.; Seidler, P.; Wan, L. S.; Fill, C. Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J. Colloid Interf. Sci. 2009, 329, 114–119.

    Article  Google Scholar 

  23. Evans, D. The systematic identification of organic compounds. J. Chem. Educ. 1999, 76, 1069.

    Article  Google Scholar 

  24. Bistričić, L.; Volovšek, V.; Dananić, V. Conformational and vibrational analysis of gamma-aminopropyltriethoxysilane. J. Mol. Struct. 2007, 834-836, 355–363.

    Article  Google Scholar 

  25. Vandenberg, E. T.; Bertilsson, L.; Liedberg, B.; Uvdal, K.; Erlandsson, R.; Elwing, H.; Lundstrom, I. Structure of 3-aminopropyl triethoxy silane on silicon-oxide. J. Colloid Interf. Sci. 1991, 147, 103–118.

    Article  Google Scholar 

  26. Léandri, C.; Oughaddou, H.; Aufray, B.; Gay, J. M.; Le Lay, G.; Ranguis, A.; Garreau, Y. Growth of Si nanostructures on Ag(001). Surf. Sci. 2007, 601, 262–267.

    Article  Google Scholar 

  27. Seah, M. P.; Gilmore, I. S.; Spencer, S. J. Quantitative XPS: I. Analysis of X-ray photoelectron intensities from elemental data in a digital photoelectron database. J. Electron Spectrosc. 2001, 120, 93–111.

    Article  Google Scholar 

  28. Sharma, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. Nanoparticles for bioimaging. Adv. Colloid Interfac. 2006, 123–126, 471–485.

    Article  Google Scholar 

  29. Eck, W.; Nicholson, A. I.; Zentgraf, H.; Semmler, W.; Bartling, S. Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano Lett. 2010, 10, 2318–2322.

    Article  Google Scholar 

  30. Zhuo, Y.; Chai, Y.-Q.; Yuan, R.; Mao, L.; Yuan, Y.-L.; Han, J. Glucose oxidase and ferrocene labels immobilized at Au/TiO2 nanocomposites with high load amount and activity for sensitive immunoelectrochemical measurement of ProGRP biomarker. Biosens. Bioelectron. 2011, 26, 3838–3844.

    Article  Google Scholar 

  31. Qiao, Z.-A.; Wang, Y. F.; Gao, Y.; Li, H. W.; Dai, T. Y.; Liu, Y. L.; Huo, Q. S. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 2010, 46, 8812–8814.

    Article  Google Scholar 

  32. Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L.; Hou, Y. B. Qu, L. T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776–780.

    Article  Google Scholar 

  33. Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 2009, 48, 4598–4601.

    Article  Google Scholar 

  34. Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F., et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

    Article  Google Scholar 

  35. Liu, H. P.; Ye, T. Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473–6475.

    Article  Google Scholar 

  36. Doherty, G. J.; McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 2009, 78, 857–902.

    Article  Google Scholar 

  37. Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 2009, 66, 2873–2896.

    Article  Google Scholar 

  38. Perumal, O. P.; Inapagolla, R.; Kannan, S.; Kannan, R. M. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 2008, 29, 3469–3476.

    Article  Google Scholar 

  39. Liu, T.; Wang, S.; Chen, G. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis. Talanta 2009, 77, 1767–1773.

    Article  Google Scholar 

  40. Jang, L.-S.; Liu, H.-J. Fabrication of protein chips based on 3-aminopropyltriethoxysilane as a monolayer. Biomed. Microdevices 2009, 11, 331–338.

    Article  Google Scholar 

  41. Zhong, Z. Y.; Shan, J. L.; Zhang, Z. M.; Qing, Y.; Wang, D. The signal-enhanced label-free immunosensor based on assembly of prussian blue-SiO2 nanocomposite for amperometric measurement of neuron-specific enolase. Electroanalysis 2010, 22, 2569–2575.

    Article  Google Scholar 

  42. Chuang, Y.-H.; Chang, Y.-T.; Liu, K.-L.; Chang, H.-Y.; Yew, T.-R. Electrical impedimetric biosensors for liver function detection. Biosens. Bioelectron. 2011, 28, 368–372.

    Article  Google Scholar 

  43. Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. Three-dimensional structures of avidin and the avidinbiotin complex. Proc. Natl. Acad. Sci. USA. 1993, 90, 5076–5080.

    Article  Google Scholar 

  44. Hiller, Y.; Gershoni, J. M.; Bayer, E. A.; Wilchek, M. Biotin binding to avidin. Oligosaccharide side chain not required for ligand association. Biochem. J. 1987, 248, 167–171.

    Google Scholar 

  45. Said, H. M.; Ma, T. Y.; Kamanna, V. S. Uptake of biotin by human hepatoma cell line, Hep G2: A carrier-mediated process similar to that of normal liver. J. Cell. Physiol. 1994, 161, 483–489.

    Article  Google Scholar 

  46. Zempleni, J.; Mock, D. M. Biotin biochemistry and human requirements. J. Nutr. Biochem. 1999, 10, 128–138.

    Article  Google Scholar 

  47. Wang, Y.-C.; Liu, X.-Q.; Sun, T.-M.; Xiong, M.-H.; Wang, J. Functionalized micelles from block copolymer of polyphosphoester and poly(ɛ-caprolactone) for receptor-mediated drug delivery. J. Control. Release 2008, 128, 32–40.

    Article  Google Scholar 

  48. David, S.; Passirani, C.; Carmoy, N.; Morille, M.; Mevel, M.; Chatin, B.; Benoit, J.-P.; Montier, T.; Pitard, B. DNA nanocarriers for systemic administration: Characterization and in vivo bioimaging in healthy mice. Mol. Ther. Nucleic Acids 2013, 2, e64.

    Article  Google Scholar 

  49. Nagabhushan, T. L.; Cooper, A. B.; Turner, W. N.; Tsai, H.; McCombie, S.; Mallams, A. K.; Rane, D.; Wright, J. J.; Reichert, P. Interaction of vicinal and nonvicinal aminohydroxy group pairs in aminoglycoside-aminocyclitol antibiotics with transition metal cations. Selective N protection. J. Am. Chem. Soc. 1978, 100, 5253–5254.

    Article  Google Scholar 

  50. Basiruddin, S. K.; Ranjan Maity, A.; Jana, N. R. Glucose/galactose/dextran-functionalized quantum dots, iron oxide and doped semiconductor nanoparticles with <100 nm hydrodynamic diameter. RSC Adv. 2012, 2, 11915–11921.

    Article  Google Scholar 

  51. Khorev, O.; Stokmaier, D.; Schwardt, O.; Cutting, B.; Ernst, B. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Biorgan. Med. Chem. 2008, 16, 5216–5231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuchen Hsieh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kung, ML., Lin, PY., Hsieh, CW. et al. Aqueous self-assembly and surface-functionalized nanodots for live cell imaging and labeling. Nano Res. 7, 1164–1176 (2014). https://doi.org/10.1007/s12274-014-0479-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0479-y

Keywords

Navigation