Skip to main content
Log in

Peptide-induced bio-mineralization as a bio-mimetic means of detecting proteins in a mineralizing bio-context

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Pathological bio-mineralization can be induced by diseases such as preeclampsia. Inspired by these naturally occurring bio-mineralization processes, we have designed a process called protein-controlled peptide assembly tandem peptide-templated bio-mineralization. The technique provides bio-context-associated data on the activity of target proteins, and facilitates the evaluation of protein function in the associated biological microenvironment. It is a bio-mimetic process that leads to the formation of Ag nanoparticle-decorated peptide nanowires, which can offer efficient signal amplification with high sensitivity for biosensing applications. Consequently, high-temperature requirement factor A1 (HtrA1) can be assayed quantitatively in clinical serum samples to offer information for the diagnosis of preeclampsia and the improved treatment of the disease. The results suggest that the process has considerable potential for use in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, Q.; Shi, Y. F.; Zhang, Q.; Li, N.; Zhan, P. F.; Song, L. L.; Dai, L. R.; Tian, J.; Du, Y.; Cheng, Z. et al. A selfassembled DNA origami-gold nanorod complex for cancer theranostics. Small 2015, 11, 5134–5141.

    Article  Google Scholar 

  2. Mei, Q.; Johnson, R. H.; Wei, X. X.; Su, F. Y.; Liu, Y.; Kelbauskas, L.; Lindsay, S.; Meldrum, D. R.; Yan, H. Onchip isotachophoresis separation of functional DNA origami capture nanoarrays from cell lysate. Nano Res. 2013, 6, 712–719.

    Article  Google Scholar 

  3. Lin, M. H.; Wang, J. J.; Zhou, G. B.; Wang, J. B.; Wu, N.; Lu, J. X.; Gao, J. M.; Chen, X. Q.; Shi, J. Y.; Zuo, X. L. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem., Int. Ed. 2015, 54, 2151–2155.

    Article  Google Scholar 

  4. Chen, W. H.; Lei, Q.; Yang, C. X.; Jia, H. Z.; Luo, G. F.; Wang, X. Y.; Liu, G.; Cheng, S. X.; Zhang, X. Z. Bioinspired nano-prodrug with enhanced tumor targeting and increased therapeutic efficiency. Small 2015, 11, 5230–5242.

    Article  Google Scholar 

  5. Yang, B.; Dong, X.; Lei, Q.; Zhuo, R. X.; Feng, J.; Zhang, X. Z. Host-guest interaction-based self-engineering of nanosized vesicles for co-delivery of genes and anticancer drugs. ACS Appl. Mater. Interfaces 2015, 7, 22084-22094.

    Article  Google Scholar 

  6. Oliva, N.; Unterman, S.; Zhang, Y.; Conde, J.; Song, H. S.; Artzi, N. Personalizing biomaterials for precision nanomedicine considering the local tissue microenvironment. Adv. Healthc. Mater. 2015, 4, 1584–1599.

    Article  Google Scholar 

  7. Klattenhoff, C. A.; Scheuermann, J. C.; Surface, L. E.; Bradley, R. K.; Fields, P. A.; Steinhauser, M. L.; Ding, H. M.; Butty, V. L.; Torrey, L.; Haas, S. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013, 152, 570–583.

    Article  Google Scholar 

  8. Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer 2009, 9, 798–809.

    Article  Google Scholar 

  9. Foster, K. S. J.; McCrary, W. J.; Ross, J. S.; Wright, C. F. Members of the hSWI/SNF chromatin remodeling complex associate with and are phosphorylated by protein kinase B/Akt. Oncogene 2006, 25, 4605–4612.

    Article  Google Scholar 

  10. Zhang, J.; Lv, J.; Wang, X. N.; Li, D. F.; Wang, Z. X.; Li, G. X. Integration of chemoselective ligation with enzymespecific catalysis: Saccharic colorimetric analysis using aminooxy/ hydrazine-functionalized gold nanoparticles. Nano Res. 2015, 8, 3853–3863.

    Article  Google Scholar 

  11. Gan, L.; Yang, M. J.; Ke, X.; Cui, G. F.; Chen, X. D.; Gupta, S.; Kellogg, W.; Higgins, D.; Wu, G. Mesoporous Ag nanocubes synthesized via selectively oxidative etching at room temperature for surface-enhanced Raman spectroscopy. Nano Res. 2015, 8, 2351–2362.

    Article  Google Scholar 

  12. Kirsch, T. Determinants of pathological mineralization. Curr. Opin. Rheumatol. 2006, 18, 174–180.

    Article  Google Scholar 

  13. Hudelist, G.; Singer, C. F.; Kubista, E.; Manavi, M.; Mueller, R.; Pischinger, K.; Czerwenka, K. Presence of nanobacteria in psammoma bodies of ovarian cancer: Evidence for pathogenetic role in intratumoral biomineralization. Histopathology 2004, 45, 633–637.

    Article  Google Scholar 

  14. Eyre, D. R.; Weis, M. A. Bone collagen: New clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif. Tissue Int. 2013, 93, 338–347.

    Article  Google Scholar 

  15. Ichikawa, H.; Imano, M.; Takeyama, Y.; Shiozaki, H.; Ohyanagi, H. Involvement of osteopontin as a core protein in cholesterol gallstone formation. J. Hepatobiliary Pancreat Surg. 2009, 16, 197–203.

    Article  Google Scholar 

  16. Guo, Y.; Zhang, D.; Lu, H.; Luo, S.; Shen, X. Association between calcifying nanoparticles and placental calcification. Int. J. Nanomedicine 2012, 7, 1679–1686.

    Article  Google Scholar 

  17. Tang, Y. N.; Ding, W. Q.; Guo, X. J.; Yuan, X. W.; Wang, D. M.; Song, J. G. Epigenetic regulation of Smad2 and Smad3 by profilin-2 promotes lung cancer growth and metastasis. Nat. Commun. 2015, 6, 8230.

    Article  Google Scholar 

  18. Chen, Q.; Hongu, T.; Sato, T.; Zhang, Y.; Ali, W.; Cavallo, J. A.; van der Velden, A.; Tian, H. S.; Di Paolo, G.; Nieswandt, B. et al. Key roles for the lipid signaling enzyme phospholipase D1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci. Signal. 2012, 5, ra79.

    Google Scholar 

  19. Belle, L.; Ali, N.; Lonic, A.; Li, X.; Paltridge, J. L.; Roslan, S.; Herrmann, D.; Conway, J. R.; Gehling, F. K.; Bert, A. G. et al. The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. Sci. Signal. 2015, 8, ra18.

    Article  Google Scholar 

  20. Song, W.; Liu, W. J.; Zhao, H.; Li, S. Z.; Guan, X.; Ying, J. M.; Zhang, Y. F.; Miao, F.; Zhang, M. M.; Ren, X. X. et al. Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway. Nat. Commun. 2015, 6, 8022.

    Article  Google Scholar 

  21. West, N. R.; McCuaig, S.; Franchini, F.; Powrie, F. Emerging cytokine networks in colorectal cancer. Nat. Rev. Immunol. 2015, 15, 615–629.

    Article  Google Scholar 

  22. Ouchi, N.; Kihara, S.; Arita, Y.; Okamoto, Y.; Maeda, K.; Kuriyama, H.; Hotta, K.; Nishida, M.; Takahashi, M.; Muraguchi, M. et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF- ? B signaling through a cAMP-dependent pathway. Circulation 2000, 102, 1296–1301.

    Article  Google Scholar 

  23. Selkoe, D. J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001, 81, 741–766.

    Google Scholar 

  24. Thadhani, R.; Solomon, C. G. Preeclampsia—A glimpse into the future. N. Engl. J. Med. 2008, 359, 858–860.

    Article  Google Scholar 

  25. Redman, C. W.; Sargent, I. L. Latest advances in understanding preeclampsia. Science 2005, 308, 1592–1594.

    Article  Google Scholar 

  26. Roberts, J. M.; Gammill, H. S. Preeclampsia: Recent insights. Hypertension 2005, 46, 1243–1249.

    Article  Google Scholar 

  27. Zong, L.; Wang, L. J.; Huang, P.; Shao, W. Y.; Song, Y.; Gou, W. L. High temperature requirement A1 in placental tissues and serum from pre-eclamptic pregnancies with or without fetal growth restriction. Arch. Med. Sci. 2013, 9, 690–696.

    Article  Google Scholar 

  28. Zong, L.; Gou, W. L.; Shao, W. Y.; Huang, P.; Li, C. F. Changes in the level of serum high-temperature requirement A1 (HtrA1) during pregnancy and its relationship to preeclampsia. Hypertens. Pregnancy 2012, 31, 389–397.

    Article  Google Scholar 

  29. Ajayi, F.; Kongoasa, N.; Gaffey, T.; Asmann, Y. W.; Watson, W. J.; Baldi, A.; Lala, P.; Shridhar, V.; Brost, B.; Chien, J. Elevated expression of serine protease HtrA1 in preeclampsia and its role in trophoblast cell migration and invasion. Am. J. Obstet. Gynecol. 2008, 199, 557.e1–557.e10.

    Google Scholar 

  30. Frochaux, V.; Hildebrand, D.; Talke, A.; Linscheid, M. W.; Schlü ter, H. Alpha-1-antitrypsin: A novel human high temperature requirement protease A1 (HTRA1) substrate in human placental tissue. PLoS One 2014, 9, e109483.

    Article  Google Scholar 

  31. Carter, C. J.; Ackerson, C. J.; Feldheim, D. L. Unusual reactivity of a silver mineralizing peptide. ACS Nano 2010, 4, 3883–3888.

    Article  Google Scholar 

  32. Hitomi, K.; Kitamura, M.; Sugimura, Y. Preferred substrate sequences for transglutaminase 2: Screening using a phagedisplayed peptide library. Amino Acids 2009, 36, 619–624.

    Article  Google Scholar 

  33. Parry, S.; Zhang, H.; Biggio, J.; Bukowski, R.; Varner, M.; Xu, Y.; Andrews, W. W.; Saade, G. R.; Esplin, M. S.; Leite, R. et al. Maternal serum serpin B7 is associated with early spontaneous preterm birth. Am. J. Obstet. Gynecol. 2014, 211, 678.e1–678.e12.

    Article  Google Scholar 

  34. John, K.; Wielgosz, S.; Schulze-Osthoff, K.; Bantel, H.; Hass, R. Increased plasma levels of CK-18 as potential cell death biomarker in patients with HELLP syndrome. Cell Death Dis. 2013, 4, e886.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lizhou Sun or Genxi Li.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, H., Huang, Y. et al. Peptide-induced bio-mineralization as a bio-mimetic means of detecting proteins in a mineralizing bio-context. Nano Res. 9, 1489–1496 (2016). https://doi.org/10.1007/s12274-016-1045-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1045-6

Keywords

Navigation