Skip to main content
Log in

Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A series of conductive polymers, i.e., poly(3-methylthiophene) (PMT), poly(thiophene) (PT), poly(3-bromothiophene) (PBT) and poly(3-chlorothiophene) (PCT), were prepared via the electrochemical polymerization process. Subsequently, their application as hole-transporting materials (HTMs) in CH3NH3PbI3 perovskite solar cells was explored. It was found that rationally increasing the work function of HTMs proves beneficial in improving the open circuit voltage (V oc) of the devices with an ITO/conductive-polymer/CH3NH3PbI3/C60/BCP/Ag structure. In addition, the higher-V oc devices with a higher-work-function HTM exhibited higher recombination resistances. The highest open circuit voltage of 1.04 V was obtained from devices with PCT, with a work function of–5.4 eV, as the hole-transporting layer. Its power conversion efficiency attained a value of approximately 16.5%, with a high fill factor of 0.764, an appreciable open voltage of 1.01 V and a short circuit current density of 21.4 mA·cm–2. This simple, controllable and low-cost manner of preparing HTMs will be beneficial to the production of large-area perovskite solar cells with a hole-transporting layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  Google Scholar 

  2. Wang, J. T. W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J. et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014, 14, 724–730.

    Article  Google Scholar 

  3. Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

    Article  Google Scholar 

  4. Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

    Article  Google Scholar 

  5. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. Il. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

    Article  Google Scholar 

  6. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  Google Scholar 

  7. Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842.

    Article  Google Scholar 

  8. Ryu, S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Yang, W. S.; Seo, J.; Seok, S. Il. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 2014, 7, 2614–2618.

    Article  Google Scholar 

  9. Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 2015, 5, 1400812.

    Article  Google Scholar 

  10. Yan, W. B.; Li, Y. L.; Li, Y.; Ye, S. Y.; Liu, Z. W.; Wang, S. F.; Bian, Z. Q.; Huang, C. H. High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy 2015, 16, 428–437.

    Article  Google Scholar 

  11. Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R. S.; Otero, L.; Mora-Sero, I. Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1628–1635.

    Article  Google Scholar 

  12. Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758–764.

    Article  Google Scholar 

  13. Guillén, E.; Ramos, F. J.; Anta, J. A.; Ahmad, S. Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques. J. Phys. Chem. C 2014, 118, 22913–22922.

    Article  Google Scholar 

  14. Gonzalez-Pedro, V.; Juarez-Perez, E. J.; Arsyad, W. S.; Barea, E. M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 2014, 14, 888–893.

    Article  Google Scholar 

  15. Juarez-Perez, E. J.; Wußler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I. Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 680–685.

    Article  Google Scholar 

  16. Frohne, H.; Shaheen, S. E.; Brabec, C. J.; Müller, D. C.; Sariciftci, N. S.; Meerholz, K. Influence of the anodic work function on the performance of organic solar cells. Chem. Phys. Chem. 2002, 3, 795–799.

    Google Scholar 

  17. Yan, W. B.; Li, Y. L.; Li, Y.; Ye, S. Y.; Liu, Z. W.; Wang, S. F.; Bian, Z. Q.; Huang, C. H. Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. Nano Res. 2015, 8, 2474–2480.

    Article  Google Scholar 

  18. Xiao, M. D.; Huang, F. Z.; Huang, W. C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., Int. Ed. 2014, 53, 9898–9093.

    Article  Google Scholar 

  19. Jeon, N. J. J.; Noh, H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. Il. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

    Article  Google Scholar 

  20. Ye, S. Y.; Sun, W. H.; Li, Y. L.; Yan, W. B.; Peng, H. T.; Bian, Z. Q.; Liu, Z. W.; Huang, C. H. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 2015, 15, 3723–3728.

    Article  Google Scholar 

  21. Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. Il. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. J. Am. Chem. Soc. 2014, 136, 7837–7840.

    Article  Google Scholar 

  22. Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

    Article  Google Scholar 

  23. Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J.; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.

    Article  Google Scholar 

  24. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

    Article  Google Scholar 

  25. Dualeh, A.; Moehl, T.; Nazeeruddin, M. K.; Grätzel, M. Temperature dependence of transport properties of spiro-MeOTAD as a hole transport material in solid-state dyesensitized solar cells. ACS Nano 2013, 7, 2292–2301.

    Article  Google Scholar 

  26. Sanchez, R. S.; Gonzalez-Pedro, V.; Lee, J. W.; Park, N. G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 2014, 5, 2357–2363.

    Article  Google Scholar 

  27. Kim, H. S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E. J.; Park, N. G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thinabsorber solar cells. Nat. Commun. 2013, 4, 2242.

    Google Scholar 

  28. Zhu, L. F.; Xiao, J. Y.; Shi, J. J.; Wang, J. J.; Lv, S. T.; Xu, Y. Z.; Luo, Y. H.; Xiao, Y.; Wang, S. R.; Meng, Q. B. et al. Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Res. 2015, 8, 1116–1127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufeng Wang or Zuqiang Bian.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Li, Y., Ye, S. et al. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells. Nano Res. 9, 1600–1608 (2016). https://doi.org/10.1007/s12274-016-1054-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1054-5

Keywords

Navigation