Skip to main content
Log in

1.82 wt.% Pt/N, P co-doped carbon overwhelms 20 wt.% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cost-effective electrocatalysts for the hydrogen evolution reaction (HER) play a key role in the field of renewable energy. Although tremendous efforts have been devoted to the search of alternative materials, Pt/C is still the most efficient electrocatalyst for the HER. Nevertheless, decreasing the loading of Pt in the designed eletrocatalysts is of significance. However, with low Pt loading, it is challenging to maintain excellent catalytic performance. Herein, a new catalyst (Pt/NPC) was prepared by dispersing Pt nanoparticles (PtNPs) with an average diameter of 1.8 nm over a three-dimensional (3D) carbon network co-doped with N and P. Because of the high electronegativity of the N and P dopants, PtNPs were uniformly dispersed on the carbon network via high electronic affinity between Pt and carbon, affording a Pt/NPC catalyst; Pt/NPC exhibited superior HER activity, attributed to the down-shift of the Pt d-band caused by the donation of charge from N and P to Pt. The results show that Pt/NPC with an ultralow Pt loading of 1.82 wt.% exhibits excellent HER performance, which corresponds to a HER mass activity 20.6-fold greater than that observed for commercial 20% Pt/C at an overpotential of 20 mV vs. RHE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  2. Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.

    Article  Google Scholar 

  3. Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

    Article  Google Scholar 

  4. Zhang, Y. J.; Gong, Q. F.; Li, L.; Yang, H. C.; Li, Y. G.; Wang, Q. B. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res. 2015, 8, 1108–1115.

    Article  Google Scholar 

  5. Yang, H. C.; Zhang, Y. J.; Hu, F.; Wang, Q. B. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 2015, 15, 7616–7620.

    Article  Google Scholar 

  6. Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015, 54, 52–65.

    Article  Google Scholar 

  7. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  8. Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pdgraphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120–12124.

    Article  Google Scholar 

  9. Li, M.; Ma, Q.; Zi, W.; Liu, X. J.; Zhu, X. J.; Liu, S. Z. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci. Adv. 2015, 1, e1400268.

    Article  Google Scholar 

  10. Cheng, H. Y.; Zhu, Y. A.; Chen, D.; Å strand, P. O.; Li, P.; Qi, Z. W.; Zhou, X. G. Evolution of carbon nanofibersupported Pt nanoparticles of different particle sizes: A molecular dynamics study. J. Phys. Chem. C 2014, 118, 23711–23722.

    Article  Google Scholar 

  11. Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771–773.

    Article  Google Scholar 

  12. Prabhuram, J.; Wang, X.; Hui, C. L.; Hsing, I.-M. Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. J. Phys. Chem. B 2003, 107, 11057–11064.

    Article  Google Scholar 

  13. Liu, J. Y. Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem 2011, 3, 934–948.

    Article  Google Scholar 

  14. Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt Nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115–123.

    Article  Google Scholar 

  15. Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.

    Article  Google Scholar 

  16. Tang, H. J.; Hessel, C. M.; Wang, J. Y.; Yang, N. L.; Yu, R. B.; Zhao, H. J.; Wang, D. Two-dimensional carbon leading to new photoconversion processes. Chem. Soc. Rev. 2014, 43, 4281–4299.

    Article  Google Scholar 

  17. Holme, T.; Zhou, Y. K.; Pasquarelli, R.; O’ Hayre, R. First principles study of doped carbon supports for enhanced platinum catalysts. Phys. Chem. Chem. Phys. 2010, 12, 9461–9468.

    Article  Google Scholar 

  18. Pylypenko, S.; Borisevich, A.; More, K. L.; Corpuz, A. R.; Holme, T.; Dameron, A. A.; Olson, T. S.; Dinh, H. N.; Gennette, T.; O’Hayre, R. Nitrogen: Unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts. Energy Environ. Sci. 2013, 6, 2957–2964.

    Article  Google Scholar 

  19. Zhou, Y. K.; Neyerlin, K.; Olson, T. S.; Pylypenko, S.; Bult, J.; Dinh, H. N.; Gennett, T.; Shao, Z. P.; O’ Hayre, R. Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 2010, 3, 1437–1446.

    Article  Google Scholar 

  20. Yu, D. S.; Xue, Y. H.; Dai, L. M. Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 2012, 3, 2863–2870.

    Article  Google Scholar 

  21. Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014, 8, 5290–5296.

    Article  Google Scholar 

  22. Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. N,P-codoped carbon networks as efficient metalfree bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem., Int. Ed. 2016, 55, 2230–2234.

    Article  Google Scholar 

  23. Li, R.; Wei, Z. D.; Gou, X. L.; Xu, W. Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Adv. 2013, 3, 9978–9984.

    Article  Google Scholar 

  24. Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130.

    Article  Google Scholar 

  25. Pan, L. J.; Yu, G. H.; Zha, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C.-K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292.

    Article  Google Scholar 

  26. Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metalfree bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

    Article  Google Scholar 

  27. Ren, H.; Shao, H.; Zhang, L. J.; Guo, D.; Jin, Q.; Yu, R. B.; Wang, L.; Li, Y. L.; Wang, Y.; Zhao, H. J. et al. A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1500296.

    Article  Google Scholar 

  28. Han, C. L.; Wang, S. P.; Wang, J.; Li, M. M.; Deng, J.; Li, H. R.; Wang Y. Controlled synthesis of sustainable N-doped hollow core–mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 2014, 7, 1809–1819.

    Article  Google Scholar 

  29. Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Spaceconfinement-induced synthesis of pyridinic- and pyrrolicnitrogen- doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.

    Article  Google Scholar 

  30. Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016, 9, 317–328.

    Article  Google Scholar 

  31. Wu, J.; Zheng, X. J.; Jin, C.; Tian, J. H.; Yang, R. Z. Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon 2015, 92, 327–338.

    Article  Google Scholar 

  32. Ji, Y. J.; Wu, Y. E.; Zhao, G. F.; Wang, D. S.; Liu, L.; He, W.; Li, Y. D. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Res. 2015, 8, 2706–2713.

    Article  Google Scholar 

  33. Han, X. P.; Cheng, F. Y.; Zhang, T. R.; Yang, J. G.; Hu, Y. X.; Chen, J. Hydrogenated uniform Pt clusters supported on porous CaMnO3 as a bifunctional electrocatalyst for enhanced oxygen reduction and evolution. Adv. Mater. 2014, 26, 2047–2051.

    Article  Google Scholar 

  34. Zeng, M.; Li, Y. G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 14942–14962.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 21425103) and Natural Science Foundation of Jiangsu Province (No. SBK201341397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangbin Wang.

Electronic supplementary material

12274_2016_1281_MOESM1_ESM.pdf

1.82 wt.% Pt/N, P co-doped carbon overwhelms 20 wt.% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Hu, F., Yang, H. et al. 1.82 wt.% Pt/N, P co-doped carbon overwhelms 20 wt.% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Res. 10, 238–246 (2017). https://doi.org/10.1007/s12274-016-1281-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1281-9

Keywords

Navigation