Skip to main content
Log in

Review of nanostructured current collectors in lithium–sulfur batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium–sulfur (Li–S) batteries are receiving increasing attention because of their high theoretical energy density and the natural abundance of S. However, their practical applications are impeded by the low areal S loading in the cathode and the fatal Li dendrites in the anode of the Li−S cells, which yield an inferior practical energy density and introduce safety concerns, respectively. In this review, we focus on an emerging approach—the nanostructured current collector—to overcome these two critical challenges for Li−S batteries. We describe the general attributes of nanostructured current collectors and examine how these attributes enhance the S utilization with a high S loading and suppress the Li dendrites by regulating the Li-deposition behavior. We present various assembly blocks that have been used for the construction of advanced nanostructured current collectors to build better S cathodes and Li anodes. Finally, we investigate the current challenges and possible solutions regarding the practical applications of nanostructured current collectors in Li−S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J.; Zhang, J. G.; Yang, Z. G.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L. Y.; Hu, J. Z.; Wang, C. M.; Xiao, J. et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. Adv. Funct. Mater. 2013, 23, 929–946.

    Article  Google Scholar 

  2. Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994–10024.

    Article  Google Scholar 

  3. Ellingsen, L. A. W.; Hung, C. R.; Majeau-Bettez, G.; Singh, B.; Chen, Z. W.; Whittingham, M. S.; Strømman, A. H. Nanotechnology for environmentally sustainable electromobility. Nat. Nanotechnol. 2016, 11, 1039–1051.

    Article  Google Scholar 

  4. Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  5. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    Article  Google Scholar 

  6. Chen, R. J.; Luo, R.; Huang, Y. X.; Wu, F.; Li, L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv. Sci. 2016, 3, 1600051.

    Article  Google Scholar 

  7. Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

    Article  Google Scholar 

  8. Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium–sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

    Article  Google Scholar 

  9. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  Google Scholar 

  10. Liang, J.; Sun, Z.-H.; Li, F.; Cheng, H.-M. Carbon materials for Li–S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.

    Article  Google Scholar 

  11. Pope, M. A.; Aksay, I. A. Structural design of cathodes for Li-S batteries. Adv. Energy Mater. 2015, 5, 1500124.

    Article  Google Scholar 

  12. Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 2015, 92, 41–63.

    Article  Google Scholar 

  13. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    Article  Google Scholar 

  14. Borchardt, L.; Oschatz, M.; Kaskel, S. Carbon materials for lithium sulfur batteries-ten critical questions. Chem. Eur. J. 2016, 22, 7324–7351.

    Article  Google Scholar 

  15. Wang, J. G.; Xie, K. Y.; Wei, B. Q. Advanced engineering of nanostructured carbons for lithium-sulfur batteries. Nano Energy 2015, 15, 413–444.

    Article  Google Scholar 

  16. Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1402273.

    Article  Google Scholar 

  17. Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.

    Article  Google Scholar 

  18. Huang, J. Q.; Zhang, Q.; Wei, F. Multi-functional separator/Interlayer system for high-stable lithium-sulfur batteries: Progress and prospects. Energy Storage Mater. 2015, 1, 127–145.

    Article  Google Scholar 

  19. Yu, M. P.; Li, R.; Wu, M. M.; Shi, G. Q. Graphene materials for lithium-sulfur batteries. Energy Storage Mater. 2015, 1, 51–73.

    Article  Google Scholar 

  20. Zhang, X. Q.; Cheng, X. B.; Zhang, Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 2016, 25, 967–984.

    Article  Google Scholar 

  21. Ma, L.; Hendrickson, K. E.; Wei, S. Y.; Archer, L. A. Nanomaterials: Science and applications in the lithium-sulfur battery. NanoToday 2015, 10, 315–338.

    Article  Google Scholar 

  22. Kang, W. M.; Deng, N. P.; Ju, J. G.; Li, Q. X.; Wu, D. Y.; Ma, X. M.; Li, L.; Naebe, M.; Cheng, B. W. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale 2016, 8, 16541–16588.

    Article  Google Scholar 

  23. Peng, H.-J.; Huang, J.-Q.; Cheng, X.-B.; Zhang, Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Article  Google Scholar 

  24. Rauh, R. D.; Shuker, F. S.; Marston, J. M.; Brummer, S. B. Formation of lithium polysulfides in aprotic media. J. Inorg. Nuclear Chem. 1977, 39, 1761–1766.

    Article  Google Scholar 

  25. Chen, X.; Hou, T. Z.; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. in press, DOI: 10.1016/j.ensm.2017.01.003.

  26. Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.

    Article  Google Scholar 

  27. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Article  Google Scholar 

  28. Zhang, C.; Yang, Q. H. Packing sulfur into carbon framework for high volumetric performance lithium-sulfur batteries. Sci. China Mater. 2015, 58, 349–354.

    Article  Google Scholar 

  29. Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G. Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 2017, 4, 1600445.

    Article  Google Scholar 

  30. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2015, 3, 1500213.

    Article  Google Scholar 

  31. Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

    Article  Google Scholar 

  32. Huang, J. Q.; Peng, H. J.; Liu, X. Y.; Nie, J. Q.; Cheng, X. B.; Zhang, Q.; Wei, F. Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 10869–10875.

    Article  Google Scholar 

  33. Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. L.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.

    Article  Google Scholar 

  34. Peng, H. J.; Huang, J. Q.; Zhao, M. Q.; Zhang, Q.; Cheng, X. B.; Liu, X. Y.; Qian, W. Z.; Wei, F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithiumsulfur batteries. Adv. Funct. Mater. 2014, 24, 2772–2781.

    Article  Google Scholar 

  35. Ji, X L..; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  36. Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. A cooperative interface for highly efficient lithium–sulfur batteries. Adv. Mater. 2016, 28, 9551–9558.

    Article  Google Scholar 

  37. Ma, L.; Zhuang, H. L.; Lu, Y. Y.; Moganty, S. S.; Hennig, R. G.; Archer, L. A. Tethered molecular sorbents: Enabling metalsulfur battery cathodes. Adv. Energy Mater. 2014, 4, 1400390.

    Article  Google Scholar 

  38. Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

    Article  Google Scholar 

  39. Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surfaceenhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

    Article  Google Scholar 

  40. Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155–2162.

    Article  Google Scholar 

  41. Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

    Article  Google Scholar 

  42. Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volumechange and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

    Article  Google Scholar 

  43. Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 2862–2867.

    Article  Google Scholar 

  44. Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

    Article  Google Scholar 

  45. Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2016, 29, 1605531.

    Article  Google Scholar 

  46. Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

    Article  Google Scholar 

  47. Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

    Article  Google Scholar 

  48. Xu, Q.; Yang, Y. F.; Shao, H. X. Substrate effects on Li+ electrodeposition in Li secondary batteries with a competitive kinetics model. Phys. Chem. Chem. Phys. 2015, 17, 20398–20406.

    Article  Google Scholar 

  49. Cheng, X.-B.; Yan, C.; Chen, X.; Guan, C.; Huang, J.-Q.; Peng, H.-J.; Zhang, R.; Yang, S.-T.; Zhang, Q. Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2017, 2, 258–270.

    Article  Google Scholar 

  50. Kazyak, E.; Wood, K. N.; Dasgupta, N. P. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 2015, 27, 6457–6462.

    Article  Google Scholar 

  51. Song, M.-K.; Cairns, E. J.; Zhang, Y. G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities. Nanoscale 2013, 5, 2186–2204.

    Article  Google Scholar 

  52. Pang, Q.; Liang, X.; Kwok, C. Y.; Kulisch, J.; Nazar, L. F. A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Adv. Energy Mater. 2016, 6, 1601630.

    Google Scholar 

  53. Zhou, G. M.; Li, L.; Ma, C. Q.; Wang, S. G.; Shi, Y.; Koratkar, N.; Ren, W. C.; Li, F.; Cheng, H.-M. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 2015, 11, 356–365.

    Article  Google Scholar 

  54. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  Google Scholar 

  55. Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv. Mater. 2016, 3374–3382.

    Google Scholar 

  56. Rao, M. M.; Song, X. Y.; Liao, H. G.; Cairns, E. J. Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim. Acta 2012, 65, 228–233.

    Article  Google Scholar 

  57. Wang, J. L.; Yao, Z. D.; Monroe, C. W.; Yang, J.; Nuli, Y. Carbonyl–β–cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv. Funct. Mater. 2013, 23, 1194–1201.

    Article  Google Scholar 

  58. Strubel, P.; Thieme, S.; Weller, C.; Althues, H.; Kaskel, S. Insights into the redistribution of sulfur species during cycling in lithium-sulfur batteries using physisorption methods. Nano Energy 2017, 34, 437–441.

    Article  Google Scholar 

  59. Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen–doped carbon composites for high–performance lithium–sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 54, 4325–4329.

    Article  Google Scholar 

  60. Myung, S.-T.; Hitoshi, Y.; Sun, Y.-K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem. 2011, 21, 9891–9911.

    Article  Google Scholar 

  61. Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim. Acta 2002, 47, 2787–2793.

    Article  Google Scholar 

  62. Zu, C. X.; Azimi, N.; Zhang, Z. C.; Manthiram, A. Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte. J. Mater. Chem. A 2015, 3, 14864–14870.

    Article  Google Scholar 

  63. Suo, L. M.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

    Article  Google Scholar 

  64. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405–416.

    Article  Google Scholar 

  65. Bieker, G.; Winter, M.; Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015, 17, 8670–8679.

    Article  Google Scholar 

  66. Fleury, V.; Chazalviel, J.-N.; Rosso, M.; Sapoval, B. The role of the anions in the growth speed of fractal electrodeposits. J. Electroanal. Chem. Interfacial Electrochem. 1990, 290, 249–255.

    Article  Google Scholar 

  67. Chazalviel, J.-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367.

    Article  Google Scholar 

  68. Rosso, M.; Gobron, T.; Brissot, C.; Chazalviel, J.-N.; Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 2001, 97–98, 804–806.

    Article  Google Scholar 

  69. Ji, X. L.; Liu, D.-Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. NanoToday 2012, 7, 10–20.

    Article  Google Scholar 

  70. Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

    Article  Google Scholar 

  71. Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

    Article  Google Scholar 

  72. Fu, Y. Z.; Su, Y. S.; Manthiram, A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew. Chem., Int. Ed. 2013, 52, 6930–6935.

    Article  Google Scholar 

  73. Barchasz, C.; Mesguich, F.; Dijon, J.; Leprêtre, J.-C.; Patoux, S.; Alloin, F. Novel positive electrode architecture for rechargeable lithium/sulfur batteries. J. Power Sources 2012, 211, 19–26.

    Article  Google Scholar 

  74. Huang, J.-Q.; Zhang, Q.; Zhang, S.-M.; Liu, X.-F.; Zhu, W. C.; Qian, W.-Z.; Wei, F. Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 2013, 58, 99–106.

    Article  Google Scholar 

  75. Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphurcodoped graphene sponge. Nat. Commun. 2015, 6, 7760.

    Article  Google Scholar 

  76. Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-grapheneoxide hybrid nested hierarchical networks for high-performance Li–S batteries. Adv. Mater. 2015, 28, 1603–1609.

    Article  Google Scholar 

  77. Han, K.; Shen, J. M.; Hao, S. Q.; Ye, H. Q.; Wolverton, C.; Kung, M. C.; Kung, H. H. Free-standing nitrogen-doped graphene paper as electrodes for high-performance lithium/dissolved polysulfide batteries. ChemSusChem 2014, 7, 2545–2553.

    Article  Google Scholar 

  78. Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphene–pure–sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 2014, 26, 625–631.

    Article  Google Scholar 

  79. Zhu, L.; Peng, H.-J.; Liang, J. Y.; Huang, J.-Q.; Chen, C.-M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as freestanding paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 2015, 11, 746–755.

    Article  Google Scholar 

  80. Miao, L. X.; Wang, W. K.; Yuan, K. G.; Yang, Y. S.; Wang, A. B. A lithium–sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth–sulfur material. Chem. Commun. 2014, 50, 13231–13234.

    Article  Google Scholar 

  81. Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 2014, 6, 8850.

    Article  Google Scholar 

  82. Yan, J. H.; Liu, X. B.; Qi, H.; Li, W. Y.; Zhou, Y.; Yao, M.; Li, B. Y. High-performance lithium–sulfur batteries with a cost-effective carbon paper electrode and high sulfurloading. Chem. Mater. 2015, 27, 6394–6401.

    Article  Google Scholar 

  83. Waluś, S.; Barchasz, C.; Bouchet, R.; Martin, J.-F.; Leprêtre, J.-C.; Alloin, F. Investigation of non-woven carbon paper as a current collector for sulfur positive electrode—Understanding of the mechanism and potential applications for Li/S batteries. Electrochim. Acta 2016, 211, 697–703.

    Article  Google Scholar 

  84. Chung, S.-H.; Manthiram, A. Low-cost, porous carbon current collector with high sulfur loading for lithium–sulfur batteries. Electrochem. Commun. 2014, 38, 91–95.

    Article  Google Scholar 

  85. Zhang, Y.; Bakenov, Z.; Zhao, Y.; Konarov, A.; Wang, Q.; Chen, P. Three-dimensional carbon fiber as current collector for lithium/sulfur batteries. Ionics 2014, 20, 803–808.

    Article  Google Scholar 

  86. Wu, F. X.; Zhao, E. B.; Gordon, D.; Xiao, Y. R.; Hu, C. C.; Yushin, G. Infiltrated porous polymer ssheets as free-standing flexible lithium–sulfur battery electrodes. Adv. Mater. 2016, 28, 6365–6371.

    Article  Google Scholar 

  87. Chung, S.-H.; Manthiram, A. Lithium–sulfur batteries with superior cycle stability by employing porous current collectors. Electrochim. Acta 2013, 107, 569–576.

    Article  Google Scholar 

  88. Babu, G.; Ababtain, K.; Ng, K. Y. S.; Arava, L. M. R. Electrocatalysis of lithium polysulfides: Current collectors as electrodes in Li/S battery configuration. Sci. Rep. 2015, 5, 8763.

    Article  Google Scholar 

  89. Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhu, L.; Yang, S.-H.; Liu, Y.; Zhang, H.-W.; Zhu, W. C.; Wei, F.; Zhang, Q. Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium–sulfur batteries. J. Power Sources 2014, 261, 264–270.

    Article  Google Scholar 

  90. Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable–shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491–496.

    Article  Google Scholar 

  91. Dörfler, S.; Hagen, M.; Althues, H.; Tübke, J.; Kaskel, S.; Hoffmann, M. J. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem. Commun. 2012, 48, 4097–4099.

    Article  Google Scholar 

  92. Sun, L.; Wang, D. T.; Luo, Y. F.; Wang, K.; Kong, W. B.; Wu, Y.; Zhang, L. N.; Jiang, K. L.; Li, Q. Q.; Zhang, Y. H. et al. Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium–sulfur batteries. ACS Nano 2015, 10, 1300–1308.

    Article  Google Scholar 

  93. Sun, L.; Kong, W. B.; Jiang, Y.; Wu, H. C.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. J. Mater. Chem. A 2015, 3, 5305–5312.

    Article  Google Scholar 

  94. Yuan, G. H.; Wang, G.; Wang, H.; Bai, J. T. A novel threedimensional sulfur/graphene/carbon nanotube composite prepared by a hydrothermal co-assembling route as binderfree cathode for lithium–sulfur batteries. J. Nanopart. Res. 2015, 17, 36.

    Article  Google Scholar 

  95. Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium–sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.

    Article  Google Scholar 

  96. Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbonnanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105–6112.

    Article  Google Scholar 

  97. Peng, H. J.; Hou, T. Z.; Zhang, Q.; Huang, J. Q.; Cheng, X. B.; Guo, M. Q.; Yuan, Z.; He, L. Y.; Wei, F. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: Mechanistic insight into capacity degradation. Adv. Mater. Interfaces 2014, 1, 1400227.

    Article  Google Scholar 

  98. Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283–3291.

    Article  Google Scholar 

  99. Xu, G. Y.; Yuan, J. R.; Tao, X. Y.; Ding, B.; Dou, H.; Yan, X. H.; Xiao, Y.; Zhang, X. G. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res. 2015, 8, 3066–3074.

    Article  Google Scholar 

  100. Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven mxene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

    Article  Google Scholar 

  101. Zhou, X. Y.; Chen, F.; Yang, J. Core@shell sulfur@ polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithium-sulfur batteries. J. Energy Chem. 2015, 24, 448–455.

    Article  Google Scholar 

  102. Cheng, X. B.; Huang, J. Q.; Peng, H. J.; Nie, J. Q.; Liu, X. Y.; Zhang, Q.; Wei, F. Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. J. Power Sources 2014, 253, 263–268.

    Article  Google Scholar 

  103. Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tubke, J. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 2015, 5, 1401986.

    Article  Google Scholar 

  104. Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Highperformance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes. Adv. Energy Mater. 2016, 6, 1501355.

    Article  Google Scholar 

  105. Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultrahigh sulfur content for a robust lithium-sulfur battery. Nano Res. 2016, 9, 240–248.

    Article  Google Scholar 

  106. Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.

    Article  Google Scholar 

  107. Hou, Y. P.; Mao, H. Z.; Xu, L. Q. MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res. 2017, 10, 344–353.

    Article  Google Scholar 

  108. Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2016, 128, 13184–13189.

    Article  Google Scholar 

  109. Bao, W. Z.; Su, D. W.; Zhang, W. X.; Guo, X.; Wang, G. X. 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 8746–8756.

    Article  Google Scholar 

  110. Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

    Article  Google Scholar 

  111. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H.-M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

    Article  Google Scholar 

  112. Liu, M. K.; Yang, Z. B.; Sun, H.; Lai, C.; Zhao, X. S.; Peng, H. S.; Liu, T. X. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for highperformance lithium-sulfur batteries. Nano Res. 2016, 9, 3735–3746.

    Article  Google Scholar 

  113. Peng, H. J.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. Janus separator of polypropylenesupported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries. Adv. Sci. 2016, 3, 1500268.

    Article  Google Scholar 

  114. Chang, C. H.; Chung, S. H.; Manthiram, A. Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing swcntmodulated separators. Small 2016, 12, 174–179.

    Article  Google Scholar 

  115. Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithiumsulfur batteries. Small 2016, 12, 381–389.

    Article  Google Scholar 

  116. Chung, S. H.; Manthiram, A. A polyethylene glycolsupported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries. Adv. Mater. 2014, 26, 7352–7357.

    Article  Google Scholar 

  117. Chung, S. H.; Manthiram, A. Nano-cellular carbon current collectors with stable cyclability for Li-S batteries. J. Mater. Chem. A 2013, 1, 9590–9596.

    Article  Google Scholar 

  118. Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 2011, 23, 5641–5644.

    Article  Google Scholar 

  119. Lee, J. S.; Kim, W.; Jang, J.; Manthiram, A. Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1601943.

    Google Scholar 

  120. Cao, Z. X.; Zhang, J.; Ding, Y. M.; Li, Y. L.; Shi, M. J.; Yue, H. Y.; Qiao, Y.; Yin, Y. H.; Yang, S. T. In situ synthesis of flexible elastic n-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries. J. Mater. Chem. A 2016, 4, 8636–8644.

    Article  Google Scholar 

  121. Wang, X. W.; Gao, T.; Han, F. D.; Ma, Z. H.; Zhang, Z.; Li, J.; Wang, C. S. Stabilizing high sulfur loading Li-S batteries by chemisorption of polysulfide on three-dimensional current collector. Nano Energy 2016, 30, 700–708.

    Article  Google Scholar 

  122. He, N.; Zhong, L.; Xiao, M.; Wang, S. J.; Han, D. M.; Meng, Y. Z. Foldable and high sulfur loading 3D carbon electrode for high-performance Li-S battery application. Sci. Rep. 2016, 6, 33871.

    Article  Google Scholar 

  123. Zhao, Q.; Hu, X. F.; Zhang, K.; Zhang, N.; Hu, Y. X.; Chen, J. Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li–S batteries. Nano Lett. 2015, 15, 721–726.

    Article  Google Scholar 

  124. Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 840–845.

    Article  Google Scholar 

  125. Babu, G.; Masurkar, N.; Al Salem, H.; Arava, L. M. R. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J. Am. Chem. Soc. 2016, 139, 171–178.

    Article  Google Scholar 

  126. Cheng, X.-B.; Zhang, Q. Dendrite-free lithium metal anodes: Stable solid electrolyte interphases for high-efficiency batteries. J. Mater. Chem. A 2015, 3, 7207–7209.

    Article  Google Scholar 

  127. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

    Article  Google Scholar 

  128. Park, M. S.; Ma, S. B.; Lee, D. J.; Im, D.; Doo, S.-G.; Yamamoto, O. A highly reversible lithium metal anode. Sci. Rep. 2014, 4, 3815.

    Article  Google Scholar 

  129. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via selfhealing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

    Article  Google Scholar 

  130. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.

    Article  Google Scholar 

  131. Zhao, C.-Z.; Cheng, X.-B.; Zhang, R.; Peng, H.-J.; Huang, J.-Q.; Ran, R.; Huang, Z.-H.; Wei, F.; Zhang, Q. Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater. 2016, 3, 77–84.

    Article  Google Scholar 

  132. Kim, H.; Lee, J. T.; Yushin, G. High temperature stabilization of lithium–sulfur cells with carbon nanotube current collector. J. Power Sources 2013, 226, 256–265.

    Article  Google Scholar 

  133. Wei, Y. J.; Tao, Y. Q.; Kong, Z. K.; Liu, L.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Unique electrochemical behavior of heterocyclic selenium–sulfur cathode materials in ether-based electrolytes for rechargeable lithium batteries. Energy Storage Mater. 2016, 5, 171–179.

    Article  Google Scholar 

  134. Fan, L.; Zhuang, H. L.; Zhang, K. H.; Cooper, V. R.; Li, Q.; Lu, Y. Y. Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium-sulfur batteries. Adv. Sci. 2016, 3, 1600175.

    Article  Google Scholar 

  135. Yuan, S. Y.; Guo, Z. Y.; Wang, L. N.; Hu, S.; Wang, Y. G.; Xia, Y. Y. Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium-sulfur battery. Adv. Sci. 2015, 2, 1500071.

    Article  Google Scholar 

  136. Zhang, M. D.; Yu, C.; Zhao, C. T.; Song, X. D.; Han, X. T.; Liu, S. H.; Hao, C.; Qiu, J. S. Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Mater. 2016, 5, 223–229.

    Article  Google Scholar 

  137. Zhai, P.-Y.; Peng, H.-J.; Cheng, X.-B.; Zhu, L.; Huang, J.-Q.; Zhu, W. C.; Zhang, Q. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries. Energy Storage Mater. 2017, 7, 56–63.

    Article  Google Scholar 

  138. Zhang, D.; Zhou, Y.; Liu, C. H.; Fan, S. S. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery. Nanoscale 2016, 8, 11161–11167.

    Article  Google Scholar 

  139. Jin, S.; Xin, S.; Wang, L. J.; Du, Z. Z.; Cao, L. N.; Chen, J. F.; Kong, X. H.; Gong, M.; Lu, J. L.; Zhu, Y. W. et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li–S batteries. Adv. Mater. 2016, 28, 9094–9102.

    Article  Google Scholar 

  140. Lee, H.; Song, J.; Kim, Y.-J.; Park, J.-K.; Kim, H.-T. Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for highperformance lithium metal batteries. Sci. Rep. 2016, 6, 30830.

    Article  Google Scholar 

  141. Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

    Article  Google Scholar 

  142. Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium–sulfur batteries. Small 2014, 10, 4257–4263.

    Google Scholar 

  143. Sun, Y. M.; Zheng, G. Y.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016, 1, 287–297.

    Article  Google Scholar 

  144. Kim, J.-S.; Kim, D. W.; Jung, H. T.; Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 2015, 27, 2780–2787.

    Article  Google Scholar 

  145. Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano 2015, 9, 6373–6382.

    Article  Google Scholar 

  146. Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y.-M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 7, 7436.

    Article  Google Scholar 

  147. Yan, C.; Cheng, X.-B.; Zhao, C.-Z.; Huang, J.-Q.; Yang, S.-T.; Zhang, Q. Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. J. Power Sources 2016, 327, 212–220.

    Article  Google Scholar 

  148. Mukherjee, R.; Thomas, A. V.; Datta, D.; Singh, E.; Li, J. W.; Eksik, O.; Shenoy, V. B.; Koratkar, N. Defectinduced plating of lithium metal within porous graphene networks. Nat. Commun. 2014, 5, 3710.

    Article  Google Scholar 

  149. Cheng, X.-B.; Yan, C.; Huang, J.-Q.; Li, P.; Zhu, L.; Zhao, L. D.; Zhang, Y. Y.; Zhu, W. C.; Yang, S.-T.; Zhang, Q. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Mater. 2017, 6, 18–25.

    Article  Google Scholar 

  150. Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H.-B.; Zhou, F.; Yu, S.-H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

    Article  Google Scholar 

  151. Duan, B. C.; Wang, W. K.; Zhao, H. L.; Wang, A. B.; Wang. M. J.; Yuan, K. G.; Yu, Z. B.; Yang, Y. S. Li-B alloy as anode material for lithium/sulfur battery. ECS Electrochem. Lett. 2013, 2, A47–A51.

    Article  Google Scholar 

  152. Zhang, X. L.; Wang, W. K.; Wang, A. B.; Huang, Y. Q.; Yuan, K. G.; Yu, Z. B.; Qiu, J. Y.; Yang, Y. S. Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery. J. Mater. Chem. A, 2014, 2, 11660–11665.

    Article  Google Scholar 

  153. Zhang, C.; Lv, W.; Tao, Y.; Yang, Q.-H. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 2015, 8, 1390–1403.

    Article  Google Scholar 

  154. Imtiaz, S.; Zhang, J.; Zafar, Z. A.; Ji, S. N.; Huang, T. Z.; Anderson, J. A.; Zhang, Z. L.; Huang, Y. H. Biomassderived nanostructured porous carbons for lithium-sulfur batteries. Sci. China Mater. 2016, 59, 389–407.

    Article  Google Scholar 

  155. Zhang, G.; Zhang, Z. W.; Peng, H. J.; Huang, J. Q.; Zhang, Q. A toolbox for lithium-sulfur battery research: Methods and protocols. Small Methods 2017, 1, 1700134.

    Article  Google Scholar 

  156. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Article  Google Scholar 

  157. Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium−sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990–12995.

    Article  Google Scholar 

  158. Yu, H. J.; Li, H. W.; Yuan, S. Y.; Yang, Y. C.; Zheng, J. H.; Hu, J. H.; Yang, D.; Wang, Y. G.; Dong, A. G. Threedimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. Nano Res., in press, DOI: 10.1007/s12274-017-1454-1.

  159. Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

    Article  Google Scholar 

  160. Zhang, R.; Chen, X.-R.; Chen, X.; Zhang, X.-Q.; Cheng, X.-B.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

    Article  Google Scholar 

  161. Lin, D.; Liu, Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials design and understanding in lithium metal anode. Nano Res., in press, DOI: 10.1007/s12274-017-1596-1.

Download references

Acknowledgements

This work was supported by National Key Research and Development Program (Nos. 2016YFA0202500, 2016YFA0200102, and 2015CB932500), and the National Natural Scientific Foundation of China (Nos. 21422604, 21676160, and 21561130151). We thank Xin-Bing Cheng, Rui Zhang, Chen-Zi Zhao, Zhe Yuan, Dai-Wei Wang, and Lin Zhu for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Peng, HJ., Huang, JQ. et al. Review of nanostructured current collectors in lithium–sulfur batteries. Nano Res. 10, 4027–4054 (2017). https://doi.org/10.1007/s12274-017-1652-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1652-x

Keywords

Navigation