Skip to main content
Log in

Plasmon-enhanced ZnO whispering-gallery mode lasing

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Collaborative enhancements from surface plasmons (SPs) and whispering-gallery modes (WGMs) can induce intense near-field effects with high spatial localization around the surface of a semiconducting material. One can construct a highly efficient hybrid microcavity using semiconducting materials through resonant coupling between SPs and WGMs. Hexagonal ZnO micro-/nanostructures, which have been employed as natural WGM microcavities for ultraviolet (UV) lasing, can be used as ideal platforms to construct such hybrid microcavities. Here, we comprehensively review the recent efforts for improving lasing performance by resonant coupling between SPs and WGMs. Traditional SPs originating from various metals as well as novel SPs originating from atomic layers such as graphene are considered. Moreover, we discuss the mechanism of light-matter interactions beyond the improvements in lasing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

    Article  CAS  Google Scholar 

  2. Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.

    Article  CAS  Google Scholar 

  3. Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713–3735.

    Article  CAS  Google Scholar 

  4. Zhu, Q. X.; Hu, C. D.; Wang, W. J.; He, M. A.; Zhou, J.; Zhao, L. Z.; Peng, Z. X.; Li, S. T.; Zhu, N.; Zhang, Y. Surface plasmon interference pattern on the surface of a silver-clad planar waveguide as a sub-micron lithography tool. Sci. China-Phys. Mech. Astron. 2011, 54, 240–244.

    Article  CAS  Google Scholar 

  5. Bozhevolnyi, S. I.; Volkov, V. S.; Devaux, E.; Laluet, J. Y.; Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006, 440, 508–511.

    Article  CAS  Google Scholar 

  6. Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nanooptics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314.

    Article  CAS  Google Scholar 

  7. Liu, L.; Han, Z. H.; He, S. L. Novel surface plasmon waveguide for high integration. Opt. Express 2005, 13, 6645–6650.

    Article  Google Scholar 

  8. Li, Y. J.; Hong, Y.; Peng, Q.; Yao, J. N.; Zhao, Y. S. Orientation-dependent exciton-plasmon coupling in embedded organic/metal nanowire heterostructures. ACS Nano 2017, 11, 10106–10112.

    Article  CAS  Google Scholar 

  9. Li, Y. J.; Yan, Y. L.; Zhang, C.; Zhao, Y. S.; Yao, J. N. Embedded branch-like organic/metal nanowire heterostructures: Liquid-phase synthesis, efficient photon-plasmon coupling, and optical signal manipulation. Adv. Mater. 2013, 25, 2784–2788.

    Article  CAS  Google Scholar 

  10. Liedberg, B.; Nylander, C.; Lundström, I. Biosensing with surface plasmon resonance—How it all started. Biosens. Bioelectron. 1995, 10, i–ix.

    Article  CAS  Google Scholar 

  11. Feng, J.; Siu, V. S.; Roelke, A.; Mehta, V.; Rhieu, S. Y.; Palmore, G. T. R.; Pacifici, D. Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano. Lett. 2012, 12, 602–609.

    Article  CAS  Google Scholar 

  12. Shahzad, M.; Medhi, G.; Peale, R. E.; Buchwald, W. R.; Cleary, J. W.; Soref, R.; Boreman, G. D.; Edwards, O. Infrared surface plasmons on heavily doped silicon. J. Appl. Phys. 2011, 110, 123105.

    Article  CAS  Google Scholar 

  13. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

    Article  CAS  Google Scholar 

  14. Panoiu, N. C.; Osgood, R. M. Subwavelength nonlinear plasmonic nanowire. Nano Lett. 2004, 4, 2427–2430.

    Article  CAS  Google Scholar 

  15. Hu, M. S.; Chen, H. L.; Shen, C. H.; Hong, L. S.; Huang, B. R.; Chen, K. H.; Chen, L. C. Photosensitive goldnanoparticle- embedded dielectric nanowires. Nat. Mater. 2006, 5, 102–106.

    Article  CAS  Google Scholar 

  16. Zhou, F.; Liu, Y.; Li, Z. Y.; Xia, Y. N. Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials. Opt. Express 2010, 18, 13337–13344.

    Article  CAS  Google Scholar 

  17. Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H. E.; Linfield, E. H.; Davies, A. G.; Ritchie, D. A.; Iotti, R. C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature 2002, 417, 156–159.

    Article  CAS  Google Scholar 

  18. Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on ingan quantum wells. Nat. Mater. 2004, 3, 601–605.

    Article  CAS  Google Scholar 

  19. Kwon, M. K.; Kim, J. Y.; Kim, B. H.; Park, I. K.; Cho, C. Y.; Byeon, C. C.; Park, S. J. Surface-plasmon-enhanced lightemitting diodes. Adv. Mater. 2008, 20, 1253–1257.

    Article  CAS  Google Scholar 

  20. Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 2014, 5, 4953.

    Article  CAS  Google Scholar 

  21. Qiu, Z. R.; Wong, K. S.; Wu, M. M.; Lin, W. J.; Xu, H. F. Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation. Appl. Phy. Lett. 2004, 84, 2739–2741.

    Article  CAS  Google Scholar 

  22. Zhu, H.; Shan, C. X.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhang, Z. Z.; Zhao, D. X.; Shen, D. Z.; Fan, X. W.; Lu, Y. M. et al. Ultralow-threshold laser realized in zinc oxide. Adv. Mater. 2009, 21, 1613–1617.

    Article  CAS  Google Scholar 

  23. Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 2011, 6, 506–510.

    Article  CAS  Google Scholar 

  24. Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281.

    Article  CAS  Google Scholar 

  25. Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Adv. Mater. 2003, 15, 1911–1914.

    Article  CAS  Google Scholar 

  26. Wiersig, J. Hexagonal dielectric resonators and microcrystal lasers. Phys. Rev. A 2003, 67, 23807–23823.

    Article  CAS  Google Scholar 

  27. Zhu, G. Y.; Li, J. T.; Tian, Z. S.; Dai, J.; Wang, Y. Y.; Li, P. L.; Xu, C. X. Electro-pumped whispering gallery mode ZnO microlaser array. Appl. Phys. Lett. 2015, 106, 21111–21115.

    Article  CAS  Google Scholar 

  28. Bashar, S. B.; Wu, C. X.; Suja, M.; Tian, H.; Shi, W. H.; Liu, J. L. Electrically pumped whispering gallery mode lasing from Au/ZnO microwire schottky junction. Adv. Opt. Mater. 2016, 4, 2063–2067.

    Article  CAS  Google Scholar 

  29. Chu, S.; Olmedo, M.; Yang, Z.; Kong, J. Y.; Liu, J. L. Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 2008, 93, 181106.

    Article  CAS  Google Scholar 

  30. Dai, J.; Xu, C. X.; Sun, X. W. ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes. Adv. Mater. 2011, 23, 4115–4120.

    Article  CAS  Google Scholar 

  31. Lin, J. M.; Lin, H. Y.; Cheng, C. L.; Chen, Y. F. Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 2006, 17, 4391–4394.

    Article  Google Scholar 

  32. Lin, Y.; Liu, X. Q.; Wang, T.; Chen, C.; Wu, H.; Liao, L.; Liu, C. Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition. Nanotechnology 2013, 24, 125705.

    Article  CAS  Google Scholar 

  33. Sidiropoulos, T. P. H.; Röder, R.; Geburt, S.; Hess, O.; Maier, S. A.; Ronning, C.; Oulton, R. F. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys. 2014, 10, 870–876.

    Article  CAS  Google Scholar 

  34. Chou, Y. H.; Wu, Y. M.; Hong, K. B.; Chou, B. T.; Shih, J. H.; Chung, Y. C.; Chen, P. Y.; Lin, T. R.; Lin, C. C.; Lin, S. D. et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett. 2016, 16, 3179–3186.

    Article  CAS  Google Scholar 

  35. Ren, M. L.; Liu, W. J.; Aspetti, C. O.; Sun, L. X.; Agarwal, R. Enhanced second-harmonic generation from metalintegrated semiconductor nanowires via highly confined whispering gallery modes. Nat. Commun. 2014, 5, 5432.

    Article  CAS  Google Scholar 

  36. Lin, H. Y.; Cheng, C. L.; Chou, Y. Y.; Huang, L. L.; Chen, Y. F.; Tsen, K. T. Enhancement of band gap emission stimulated by defect loss. Opt. Express 2006, 14, 2372–2379.

    Article  CAS  Google Scholar 

  37. Abiyasa, A. P.; Yu, S. F.; Lau, S. P.; Leong, E. S. P.; Yang, H. Y. Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Appl. Phys. Lett. 2007, 90, 231106.

    Article  CAS  Google Scholar 

  38. Zhang, S. G.; Wen, L.; Li, J. L.; Gao, F. L.; Zhang, X. W.; Li, L. H.; Li, G. Q. Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres. J. Phy. D: Appl. Phys 2014, 47, 495103–495109.

    Article  CAS  Google Scholar 

  39. Jiang, M. M.; Li, J. T.; Xu, C. X.; Wang, S. P.; Shan, C. X.; Xuan, B.; Ning, Y. Q.; Shen, D. Z. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Opt. Express 2014, 22, 23836–23850.

    Article  CAS  Google Scholar 

  40. Liu, Y.; Willis, R. F.; Emtsev, K.; Seyller, T. Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B 2008, 78, 201403–201407.

    Article  CAS  Google Scholar 

  41. Liu, R.; Fu, X. W.; Meng, J.; Bie, Y. Q.; Yu, D. P.; Liao, Z. M. Graphene plasmon enhanced photoluminescence in ZnO microwires. Nanoscale 2013, 5, 5294–5298.

    Article  CAS  Google Scholar 

  42. Li, J. T.; Lin, Y.; Lu, J. F.; Xu, C. X.; Wang, Y. Y.; Shi, Z. L.; Dai, J. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance. ACS Nano 2015, 9, 6794–6800.

    Article  CAS  Google Scholar 

  43. Tai, Y.; Guo, Z. C.; Sharma, J. Improved charge separation properties of organic hetero-junction solar cells by selfassembled monolayers anchored Ag nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 10813–10816.

    Article  CAS  Google Scholar 

  44. Theiss, J. R. Design and characterization of metal and semiconducting nanostructures and nanodevices. Ph.D. Dissertation, University of Southern California, CA, 2013.

    Google Scholar 

  45. Ujihara, M.; Dang, N. M.; Imae, T. Surface-enhanced resonance Raman scattering of rhodamine 6G in dispersions and on films of confeito-like Au nanoparticles. Sensors 2017, 17, 2563–2580.

    Article  CAS  Google Scholar 

  46. Jia, Y. R.; Zhang, L.; Song, L. P.; Dai, L. W.; Lu, X. F.; Huang, Y. J.; Zhang, J. W.; Guo, Z. Y.; Chen, T. Giant vesicles with anchored tiny gold nanowires: Fabrication and surface-enhanced Raman scattering. Langmuir 2017, 33, 13376–13383.

    Article  CAS  Google Scholar 

  47. Kochuveedu, S. T.; Kim, D. P.; Kim, D. H. Surfaceplasmon- induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration. J. Phys. Chem. C 2012, 116, 2500–2506.

    Article  CAS  Google Scholar 

  48. Jiang, J.; Zhang, L. Z.; Li, H.; He, W. W.; Yin, J. J. Selfdoping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale 2013, 5, 10573–10581.

    Article  CAS  Google Scholar 

  49. Gao, H. W.; Liu, C.; Jeong, H. E.; Yang, P. D. Plasmonenhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 2012, 6, 234–240.

    Article  CAS  Google Scholar 

  50. Yang, N. L.; Liu, Y. Y.; Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li, Y. L.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano 2013, 7, 1504–1512.

    Article  CAS  Google Scholar 

  51. Haes, A. J.; Van Duyne, R. P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604.

    Article  CAS  Google Scholar 

  52. Homola, J.; Yee, S. S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sensor. Actuat. B: Chem. 1999, 54, 3–15.

    Article  CAS  Google Scholar 

  53. Knight, M. W.; King, N. S.; Liu, L.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum for plasmonics. ACS nano 2013, 8, 834–840.

    Article  CAS  Google Scholar 

  54. Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006, 6, 833–838.

    Article  CAS  Google Scholar 

  55. Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.

    Article  CAS  Google Scholar 

  56. West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808.

    Article  CAS  Google Scholar 

  57. Ekinci, Y.; Solak, H. H.; Löffler, J. F. Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 2008, 104, 083107.

    Article  CAS  Google Scholar 

  58. McMahon, J. M.; Schatz, G. C.; Gray, S. K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013, 15, 5415–5423.

    Article  CAS  Google Scholar 

  59. Despoja, V.; Novko, D.; Dekanić, K.; Šunjić, M.; Marušić, L. Two-dimensional and π plasmon spectra in pristine and doped graphene. Phys. Rev. B 2013, 87, 075447.

    Article  CAS  Google Scholar 

  60. Eberlein, T.; Bangert, U.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406.

    Article  CAS  Google Scholar 

  61. Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kürzinger, K.; Klar, T. A.; Feldmann, J. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 2008, 100, 203002.

    Article  CAS  Google Scholar 

  62. Zhu, J.; Ren, Y. J. Tuning the plasmon shift and local electric field distribution of gold nanodumbbell: The effect of surface curvature transition from positive to negative. Appl. Surf. Sci. 2013, 285, 649–656.

    Article  CAS  Google Scholar 

  63. Yang, Z. L.; Aizpurua, J.; Xu, H. X. Electromagnetic field enhancement in ters configurations. J. Raman Spectrosc. 2009, 40, 1343–1348.

    Article  CAS  Google Scholar 

  64. Knight, M. W.; Wang, Y. M.; Urban, A. S.; Sobhani, A.; Zheng, B. Y.; Nordlander, P.; Halas, N. J. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013, 13, 1687–1692.

    Article  CAS  Google Scholar 

  65. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmoninduced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  CAS  Google Scholar 

  66. White, T. P.; Catchpole, K. R. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. 2012, 101, 073905.

    Article  CAS  Google Scholar 

  67. Moskovits, M. Hot electrons cross boundaries. Science 2011, 332, 676–677.

    Article  CAS  Google Scholar 

  68. Chen, R.; Ling, B.; Sun, X. W.; Sun, H. D. Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv. Mater. 2011, 23, 2199–2204.

    Article  CAS  Google Scholar 

  69. Czekalla, C.; Sturm, C.; Schmidt-Grund, R.; Cao, B. Q.; Lorenz, M.; Grundmann, M. Whispering gallery mode lasing in zinc oxide microwires. Appl. Phys. Lett. 2008, 92, 241102.

    Article  CAS  Google Scholar 

  70. Kim, C.; Kim, Y. J.; Jang, E. S.; Yi, G. C.; Kim, H. H. Whispering-gallery-modelike-enhanced emission from ZnO nanodisk. Appl. Phys. Lett. 2006, 88, 093104.

    Article  CAS  Google Scholar 

  71. Ngo, T. H. B.; Chien, C. H.; Wu, S. H.; Chang, Y. C. Size and morphology dependent evolution of resonant modes in ZnO microspheres grown by hydrothermal synthesis. Optics express 2016, 24, 16010–16015.

    Article  CAS  Google Scholar 

  72. Yu, D. S.; Chen, Y. J.; Li, B. J.; Chen, X. D.; Zhang, M. Q.; Zhao, F. L.; Ren, S. Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates. Appl. Phys. Lett. 2007, 91, 091116.

    Article  CAS  Google Scholar 

  73. Liu, J. Z.; Lee, S.; Ahn, Y. H.; Park, J. Y.; Koh, K. H.; Park, K. H. Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail. Appl. Phys. Lett. 2008, 92, 263102.

    Article  CAS  Google Scholar 

  74. Wang, D.; Seo, H. W.; Tin, C. C.; Bozack, M. J.; Williams, J. R.; Park, M.; Tzeng, Y. Lasing in whispering gallery mode in ZnO nanonails. J. Appl. Phys. 2006, 99, 093112.

    Article  CAS  Google Scholar 

  75. Zhu, G. P.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P. Twophoton excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle. Appl. Phys. Lett. 2009, 94, 051106.

    Article  CAS  Google Scholar 

  76. Xing, G. Z.; Wang, D. D.; Yao, B.; Nien, A. Q. L. F.; Yan, Y. S. Structural characteristics, low threshold ultraviolet lasing and ultrafast carrier dynamics in high crystalline ZnO nanowire arrays. Chem. Phys. Lett. 2011, 515, 132–136.

    Article  CAS  Google Scholar 

  77. Dai, J.; Xu, C. X.; Zheng, K.; Lv, C. G.; Cui, Y. P. Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett. 2009, 95, 241110.

    Article  CAS  Google Scholar 

  78. Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983.

    Article  CAS  Google Scholar 

  79. Meng, X. Q.; Zhao, D. X.; Zhang, J. Y.; Shen, D. Z.; Lu, Y. M.; Dong, L.; Xiao, Z. Y.; Liu, Y. C.; Fan, X. W. Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing. Chem. Phys. Lett. 2005, 413, 450–453.

    Article  CAS  Google Scholar 

  80. Som, T.; Karmakar, B. Surface plasmon resonance in nanogold antimony glass-ceramic dichroic nanocomposites: One-step synthesis and enhanced fluorescence application. Appl. Surf. Sci. 2009, 255, 9447–9452.

    Article  CAS  Google Scholar 

  81. Pachoumi, O.; Bakulin, A. A.; Sadhanala, A.; Sirringhaus, H.; Friend, R. H.; Vaynzof, Y. Improved performance of ZnO/polymer hybrid photovoltaic devices by combining metal oxide doping and interfacial modification. J. Phys. Chem. C 2014, 118, 18945–18950.

    Article  CAS  Google Scholar 

  82. Qiao, Q.; Shan, C. X.; Zheng, J.; Zhu, H.; Yu, S. F.; Li, B. H.; Jia, Y.; Shen, D. Z. Surface plasmon enhanced electrically pumped random lasers. Nanoscale 2013, 5, 513–517.

    Article  CAS  Google Scholar 

  83. Brewster, M. M.; Zhou, X.; Lim, S. K.; Gradecak, S. Role of Au in the growth and nanoscale optical properties of ZnO nanowires. J. Phys. Chem. Lett. 2011, 2, 586–591.

    Article  CAS  Google Scholar 

  84. You, J. B.; Zhang, X. W.; Fan, Y. M.; Qu, S.; Chen, N. F. Surface plasmon enhanced ultraviolet emission from ZnO films deposited on Ag/Si(001) by magnetron sputtering. Appl. Phys. Lett. 2007, 91, 231907.

    Article  CAS  Google Scholar 

  85. Lee, M. K.; Kim, T. G.; Kim, W.; Sung, Y. M. Surface plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals. J. Phys. Chem. C 2008, 112, 10079–10082.

    Article  CAS  Google Scholar 

  86. Im, J.; Singh, J.; Soares, J. W.; Steeves, D. M.; Whitten, J. E. Synthesis and optical properties of dithiol-linked ZnO/gold nanoparticle composites. J. Phys. Chem. C 2011, 115, 10518–10523.

    Article  CAS  Google Scholar 

  87. Li, J.; Ong, H. C. Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films. Appl. Phys. Lett. 2008, 92, 121107–121111.

    Article  CAS  Google Scholar 

  88. Dixit, T.; Palani, I.; Singh, V. Role of surface plasmon decay mediated hot carriers toward the photoluminescence tuning of metal-coated ZnO nanorods. J. Phys. Chem. C 2017, 121, 3540–3548.

    Article  CAS  Google Scholar 

  89. Ji, X. H.; Zhang, Q. Y.; Lau, S. P.; Jiang, H. X.; Lin, J. Y. Temperature-dependent photoluminescence and electron field emission properties of AlN nanotip arrays. Appl. Phys. Lett. 2009, 94, 173106.

    Article  CAS  Google Scholar 

  90. Lu, J. F.; Xu, C. X.; Dai, J.; Li, J. T.; Wang, Y. Y.; Lin, Y.; Li, P. L. Plasmon-enhanced whispering gallery mode lasing from hexagonal Al/ZnO microcavity. ACS Photonics 2015, 2, 73–77.

    Article  CAS  Google Scholar 

  91. Wang, Y. Y.; Qin, F. F.; Lu, J. F.; Li, J. T.; Zhu, Z.; Zhu, Q. X.; Zhu, Y.; Shi, Z. L.; Xu, C. X. Plasmon enhancement for vernier coupled single-mode lasing from ZnO/Pt hybrid microcavities. Nano Res. 2017, 10, 3447–3456.

    Article  CAS  Google Scholar 

  92. Wang, C. S.; Lin, H. Y.; Lin, J. M.; Chen, Y. F. Surfaceplasmon- enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles. Appl. Phys. Express 2012, 5, 062003.

    Article  CAS  Google Scholar 

  93. Pei, J.; Jiang, D.; Zhao, M.; Duan, Q.; Liu, R.; Sun, L.; Guo, Z.; Hou, J.; Qin, J.; Li, B. Controlled enhancement range of the responsivity in ZnO ultraviolet photodetectors by Pt nanoparticles. Appl. Surf. Sci. 2016, 389, 1056–1061.

    Article  CAS  Google Scholar 

  94. Lawrie, B. J.; Haglund, R. F.; Mu, R. Enhancement of ZnO photoluminescence by localized and propagating surface plasmons. Opt. Express 2009, 17, 2565–2572.

    Article  CAS  Google Scholar 

  95. Lin, Y.; Li, J.; Xu, C.; Fan, X.; Wang, B. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower. Appl. Phys. Lett. 2014, 105, 142107–142111.

    Article  CAS  Google Scholar 

  96. Cheng, C. W.; Sie, E. J.; Liu, B.; Huan, C. H. A.; Sum, T. C.; Sun, H. D.; Fan, H. J. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Appl. Phys. Lett. 2010, 96, 071107.

    Article  CAS  Google Scholar 

  97. Wang, Y. Y.; Xu, C. X.; Li, J. T.; Dai, J.; Lin, Y.; Zhu, G. Y.; Lu, J. F. Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles. Sci. Adv. Mater. 2015, 7, 1156–1162.

    Article  CAS  Google Scholar 

  98. Qin, F. F.; Xu, C. X.; Zhu, Q. X.; Lu, J. F.; You, D. T.; Xu, W.; Zhu, Z.; Manohari, A. G.; Chen, F. Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons. Nanoscale 2018, 10, 623–627.

    Article  CAS  Google Scholar 

  99. Qin, F. F.; Chang, N.; Xu, C. X.; Zhu, Q. X.; Wei, M.; Zhu, Z.; Chen, F.; Lu, J. F. Underlying mechanism of blue emission enhancement in Au decorated p-GaN film. RSC Adv. 2017, 7, 15071–15076.

    Article  CAS  Google Scholar 

  100. Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S.-H.; Ahn, K. J. et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403.

    Article  CAS  Google Scholar 

  101. Li, J. T.; Xu, C. X.; Nan, H. Y.; Jiang, M. M.; Gao, G. Y.; Lin, Y.; Dai, J.; Zhu, G. Y.; Ni, Z. H.; Wang, S. F. et al. Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity. ACS Appl. Mater. Interfaces 2014, 6, 10469–10475.

    Article  CAS  Google Scholar 

  102. Zhu, Q. X.; Qin, F. F.; Lu, J. F.; Zhu, Z.; Nan, H. Y.; Shi, Z. L.; Ni, Z. H.; Xu, C. X. Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement. Nano Res. 2017, 10, 1996–2004.

    Article  CAS  Google Scholar 

  103. Lu, J. F.; Li, J. T.; Xu, C. X.; Li, Y.; Dai, J.; Wang, Y. Y.; Lin, Y.; Wang, S. F. Direct resonant coupling of al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Appl. Mater. Interfaces 2014, 6, 18301–18305.

    Article  CAS  Google Scholar 

  104. Chen, J. S.; Žídek, K.; Abdellah, M.; Al-Marri, M. J.; Zheng, K. B.; Pullerits, T. Surface plasmon inhibited photo-luminescence activation in CdSe/ZnS core shell quantum dots. J. Phys.: Condens. Matter 2016, 28, 254001.

    Google Scholar 

  105. Chen, T.; Xing, G. Z.; Zhang, Z.; Chen, H. Y.; Wu, T. Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles. Nanotechnology 2008, 19, 435711.

    Article  CAS  Google Scholar 

  106. Mishra, Y. K.; Mohapatra, S.; Singhal, R.; Avasthi, D. K.; Agarwal, D. C.; Ogale, S. B. Au–ZnO: A tunable localized surface plasmonic nanocomposite. Appl. Phys. Lett. 2008, 92, 043107.

    Article  CAS  Google Scholar 

  107. Cheng, P. H.; Li, D. S.; Yuan, Z. Z.; Chen, P. L.; Yang, D. R. Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film. Appl. Phys. Lett. 2008, 92, 041119.

    Article  CAS  Google Scholar 

  108. Zhang, C.; Xu, H. Y.; Liu, W. Z.; Yang, L.; Zhang, J.; Zhang, L. X.; Wang, J. N.; Ma, J. G.; Liu, Y. C. Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon-localized surface plasmon couplings. Opt. Express 2015, 23, 15565–15574.

    Article  CAS  Google Scholar 

  109. Mahanti, M.; Basak, D. Enhanced photoluminescence in Ag@SiO2 core shell nanoparticles coated ZnO nanorods. J. Lumin. 2014, 154, 535–540.

    Article  CAS  Google Scholar 

  110. Liu, B. B.; Zhu, W. R.; Gunapala, S. D.; Stockman, M. I.; Premaratne, M. Open resonator electric spaser. ACS Nano 2017, 11, 12573–12582.

    Article  CAS  Google Scholar 

  111. Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Bakker, R.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a spaserbased nanolaser. Nature 2009, 460, 1110–1112.

    Article  CAS  Google Scholar 

  112. Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629–632.

    Article  CAS  Google Scholar 

  113. Lu, J. F.; Jiang, M. M.; Wei, M.; Xu, C. X.; Wang, S. F.; Zhu, Z.; Qin, F. F.; Shi, Z. L.; Pan, C. F. Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers. ACS Photonics 2017, 4, 2419–2424.

    Article  CAS  Google Scholar 

  114. Lu, Y.-J.; Wang, C.-Y.; Kim, J.; Chen, H.-Y.; Lu, M.-Y.; Chen, Y.-C.; Chang, W.-H.; Chen, L.-J.; Stockman, M. I.; Shih, C.-K. et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett. 2014, 14, 4381–4388.

    Article  CAS  Google Scholar 

  115. Chou, Y.-H.; Chou, B.-T.; Chiang, C.-K.; Lai, Y.-Y.; Yang, C.-T.; Li, H.; Lin, T.-R.; Lin, C.-C.; Kuo, H.-C.; Wang, S.-C. et al. Ultrastrong mode confinement in ZnO surface plasmon nanolasers. ACS Nano 2015, 9, 3978–3983.

    Article  CAS  Google Scholar 

  116. Humar, M.; Yun, S. H. Intracellular microlasers. Nat. Photonics 2015, 9, 572–578.

    Article  CAS  Google Scholar 

  117. Li, Z.-Y.; Xia, Y. N. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett. 2010, 10, 243–249.

    Article  CAS  Google Scholar 

  118. Lu, J. F.; Xu, C. X.; Nan, H. Y.; Zhu, Q. X.; Qin, F. F.; Manohari, A. G.; Wei, M.; Zhu, Z.; Shi, Z. L.; Ni, Z. H. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection. Appl. Phys. Lett. 2016, 109, 073701.

    Article  CAS  Google Scholar 

  119. Liu, Y. J.; Xu, C. X.; Lu, J. F.; Zhu, Z.; Zhu, Q. X.; Manohari, A. G.; Shi, Z. L. Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates. Appl. Surf. Sci. 2018, 427, 830–836.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61275054, 11604114 and 11734005) and Science and Technology Support Program of Jiangsu Province (No. BE2016177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Qin, F., Zhu, Q. et al. Plasmon-enhanced ZnO whispering-gallery mode lasing. Nano Res. 11, 3050–3064 (2018). https://doi.org/10.1007/s12274-018-2047-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2047-3

Keywords

Navigation