Skip to main content
Log in

Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

“PlantNanOmics” is an emerging topic in agricultural research that explores the potential effect of application of nanomaterials on plant growth. Graphene oxide (GO) has excellent properties due to its basal carbon plane and oxygen-containing functional groups. In the present work, the antimicrobial activity of GO was exploited to extend the vase life and improve the quality of cut roses (cv. Carola). The results revealed that the cut roses cultivated in low doses of GO (0.1 mg/L) had longer vase life, larger diameter, and better water relations. Microbial contaminations at the basal stem end is the most common reason for stem blockage that causes water stress and early wilting of cut flowers. GO was found to act as a germicide, effectively inhibiting the microbial growth at the cut stem end and improving water uptake and water balance of cut roses. Therefore, GO can serve as a promising preservative to increase the ornamental value of cut flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F. F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 2012, 7, 749–756.

    Article  Google Scholar 

  2. Shi, W. C.; Fredrickson, G. H.; Kramer, E. J.; Ntaras, C.; Avgeropoulos, A.; Demassieux, Q.; Creton, C. Mechanics of an asymmetric hard–soft lamellar nanomaterial. ACS Nano 2016, 10, 2054–2062.

    Article  Google Scholar 

  3. Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

    Article  Google Scholar 

  4. Valentini, F.; Carbone, M.; Palleschi, G. Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Anal. Bioanal. Chem. 2013, 405, 451–465.

    Article  Google Scholar 

  5. Raliya, R.; Tarafdar, J. C.; Gulecha, K.; Choudhary, K.; Ram, R.; Mal, P.; Saran, R. P. Scope of nanoscience and nanotechnology in agriculture. J. Appl. Biol. Biotechnol. 2013, 1, 41–44.

    Google Scholar 

  6. Gogos, A.; Knauer, K.; Bucheli, T. D. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J. Agric. Food Chem. 2012, 60, 9781–9792.

    Article  Google Scholar 

  7. Parisi, C.; Vigani, M.; Rodríguez-Cerezo, E. Agricultural nanotechnologies: What are the current possibilities? Nano Today 2015, 10, 124–127.

    Article  Google Scholar 

  8. Wang, P.; Lombi, E.; Zhao, F. J.; Kopittke, P. M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712.

    Article  Google Scholar 

  9. Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P. K.; Zaidi, M. G. H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012, 66, 303–310.

    Article  Google Scholar 

  10. Zuverza-Mena, N.; Martínez-Fernández, D.; Du, W. C.; Hernandez-Viezcas, J. A.; Bonilla-Bird, N.; López-Moreno, M. L.; Komárek, M.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—A review. Plant Physiol. Biochem. 2017, 110, 236–264.

    Article  Google Scholar 

  11. Cañas, J. E.; Long, M.; Nations, S.; Vadan, R.; Dai, L.; Luo, M. X.; Ambikapathi, R.; Lee, E. H.; Olszyk, D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 2008, 27, 1922–1931.

    Article  Google Scholar 

  12. Khodakovskaya, M. V.; Kim, B. S.; Kim, J. N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C. E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013, 9, 115–123.

    Article  Google Scholar 

  13. Khodakovskaya, M. V.; de Silva, K.; Nedosekin, D. A.; Dervishi, E.; Biris, A. S.; Shashkov, E. V.; Galanzha, E. I.; Zharov, V. P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 1028–1033.

    Article  Google Scholar 

  14. Villagarcia, H.; Dervishi, E.; de Silva, K.; Biris, A. S.; Khodakovskaya, M. V. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 2012, 8, 2328–2334.

    Article  Google Scholar 

  15. Zhang, M.; Gao, B.; Chen, J. J.; Li, Y. C.; Creamer, A. E.; Chen, H. Slow-release fertilizer encapsulated by graphene oxide films. Chem. Eng. J. 2014, 255, 107–113.

    Article  Google Scholar 

  16. He, Y. J.; Hu, R. R.; Zhong, Y. J.; Zhao, X. L.; Chen, Q.; Zhu, H. W. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 2018, 11, 1928–1937.

    Article  Google Scholar 

  17. Chen, S. G.; Guo, Y. J.; Zhong, H. Q.; Chen, S. J.; Li, J. N.; Ge, Z. C.; Tang, J. N. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chem. Eng. J. 2014, 256, 238–246.

    Article  Google Scholar 

  18. Chen, S. G.; Guo, Y. J.; Chen, S. J.; Yu, H. M.; Ge, Z. C.; Zhang, X.; Zhang, P. X.; Tang, J. N. Facile preparation and synergistic antibacterial effect of three-component Cu/TiO2/CS nanoparticles. J. Mater. Chem. 2012, 22, 9092–9099.

    Article  Google Scholar 

  19. Chen, Y. X.; Li, J. N.; Li, Q. Q.; Shen, Y. Y.; Ge, Z. C.; Zhang, W. W.; Chen, S. G. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohyd. Polym. 2016, 143, 246–253.

    Article  Google Scholar 

  20. Zhang, S. B.; Yang, X. H.; Tang, B.; Yuan, L. J.; Wang, K.; Liu, X. Y.; Zhu, X. L.; Li, J. N.; Ge, Z. C.; Chen, S. G. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. Chem. Eng. J. 2018, 336, 123–132.

    Article  Google Scholar 

  21. Chen, S. G.; Yuan, L. J.; Li, Q. Q.; Li, J. N.; Zhu, X. L.; Jiang, Y. G.; Sha, O.; Yang, X. H.; Xin, J. H.; Wang, J. X. et al. Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating. Small 2016, 12, 3516–3521.

    Article  Google Scholar 

  22. Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323.

    Article  Google Scholar 

  23. Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.

    Article  Google Scholar 

  24. Gurunathan, S.; Han, J. W.; Abdal Daye, A.; Eppakayala, V.; Kim, J. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 2012, 7, 5901–5914.

    Article  Google Scholar 

  25. Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980.

    Article  Google Scholar 

  26. Saharan, V.; Sharma, G.; Yadav, M.; Choudhary, M. K.; Sharma, S. S.; Pal, A.; Raliya, R.; Biswas, P. Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol. 2015, 75, 346–353.

    Article  Google Scholar 

  27. Lü, P. T.; He, S. G.; Li, H. M.; Cao, J. P.; Xu, H. L. Effects of nano-silver treatment on vase life of cut rose cv. Movie Star flowers. J. Sci. Food Agric. Environ. 2010, 8, 1118–1122.

    Google Scholar 

  28. Solgi, M.; Kafi, M.; Taghavi, T. S.; Naderi, R. Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. “Dune”) flowers. Postharvest Biol. Technol. 2009, 53, 155–158.

    Article  Google Scholar 

  29. Romero, A. M.; Vega, D.; Correa, O. S. Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Appl. Soil Ecol. 2014, 82, 38–43.

    Article  Google Scholar 

  30. Da Silva, J. A. T. The cut flower: Postharvest considerations. J. Biol. Sci. 2003, 3, 406–442.

    Article  Google Scholar 

  31. de Witte, Y.; Harkema, H.; van Doorn, W. G. Effect of antimicrobial compounds on cut Gerbera flowers: Poor relation between stem bending and numbers of bacteria in the vase water. Postharvest Biol. Technol. 2014, 91, 78–83.

    Article  Google Scholar 

  32. Lü, P. T.; Cao, J. P.; He, S. G.; Liu, J. P.; Li, H. M.; Cheng, G. P.; Ding, Y. P.; Joyce, D. C. Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol. Technol. 2010, 57, 196–202.

    Article  Google Scholar 

  33. Amingad, V.; Sreenivas, K. N.; Fakrudin, B.; Seetharamu, G. K.; Shankarappa, T. H.; Sangama; Venugopalan, R. Comparison of silver nanoparticles and other metal nanoparticles on postharvest attributes and bacterial load in cut roses var. Taj Mahal. Int. J. Pure Appl. Biosci. 2017, 5, 579–584.

    Article  Google Scholar 

  34. Li, H. M.; Huang, X. M.; Li, J. B.; Liu, J. P.; Joyce, D.; He, S. G. Efficacy of nano-silver in alleviating bacteria-related blockage in cut rose cv. Movie Star stems. Postharvest Biol. Technol. 2012, 74, 36–41.

    Article  Google Scholar 

  35. Zhao, D. Q.; Cheng, M. L.; Tang, W. H.; Liu, D.; Zhou, S. Y.; Meng, J. S.; Tao, J. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma, in press, DOI: 10.1007/s00709-018-1209-1.

  36. Alekasir, K.; Rahim, N. H.; Azar, A. M. Effects of silver nanoparticles (SNPs) pulsing treatment and sucrose holding on flower and leaf senescence of cut rose. J. Ornamen. Plants 2017, 7, 103–113.

    Google Scholar 

  37. Leghari, A. J.; Laghari, U. A.; Laghari, A. H.; Bhutto, T. A. Cultivation of rose (Rosa indica L.). J. Floricult. Landscap. 2016, 2, 1–4.

    Google Scholar 

  38. Bahremand, S.; Razmjoo, J.; Farahmand, H. Effects of nano-silver and sucrose applications on cut flower longevity and quality of tuberose (Polianthus tuberosa). Int. J. Hort. Sci. Technol. 2014, 1, 67–77.

    Google Scholar 

  39. Pompodakis, N. E.; Joyce, D. C. Abscisic acid analogue effects on the vase life and leaf crisping of cut Baccara roses. Aust. J. Exp. Agric. 2003, 43, 425–428.

    Article  Google Scholar 

  40. Pouri, H. A.; Nejad, A. R.; Shahbazi, F. Effects of simulated in-transit vibration on the vase life and post-harvest characteristics of cut rose flowers. Hortic. Environ. Biot. 2017, 58, 38–47.

    Article  Google Scholar 

  41. Nothnagl, M.; Kosiba, A.; Larsen, R. U. Predicting the effect of irradiance and temperature on the flower diameter of greenhouse grown Chrysanthemum. Sci. Hortic. 2004, 99, 319–329.

    Article  Google Scholar 

  42. He, S. G.; Joyce, D. C.; Irving, D. E.; Faragher, J. D. Stem end blockage in cut Grevillea “Crimson Yul-lo” inflorescences. Postharvest Biol. Technol. 2006, 41, 78–84.

    Article  Google Scholar 

  43. Sun, P. Z.; Liu, H.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Zhu, H. W. Ultrafast liquid water transport through graphenebased nanochannels measured by isotope labelling. Chem. Commun. 2015, 51, 3251–3254.

    Article  Google Scholar 

  44. Daudi, A.; O’Brien, J. A. Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio. Protoc. 2012, 2, e263.

    Article  Google Scholar 

  45. van Wees, S. Phenotypic analysis of Arabidopsis mutants: Trypan blue stain for fungi, oomycetes, and dead plant cells. CSH Protoc. 2008, 3, DOI: 10.1101/pdb.prot4982.

  46. Dwivedi, S. K.; Arora, A.; Singh, V. P.; Sairam, R.; Bhattacharya, R. C. Effect of sodium nitroprusside on differential activity of antioxidants and expression of SAGs in relation to vase life of gladiolus cut flowers. Sci. Hortic. 2016, 210, 158–165.

    Article  Google Scholar 

  47. Fanourakis, D.; Pieruschka, R.; Savvides, A.; Macnish, A. J.; Sarlikioti, V.; Woltering, E. J. Sources of vase life variation in cut roses: A review. Postharvest Biol. Technol. 2013, 78, 1–15.

    Article  Google Scholar 

  48. In, B. C.; Ha, S. T. T.; Lee, Y. S.; Lim, J. H. Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biol. Technol. 2017, 131, 74–83.

    Article  Google Scholar 

  49. Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399.

    Article  Google Scholar 

  50. Arora, A.; Sairam, R. K.; Srivastava, G. C. Oxidative stress and antioxidative system in plants. Curr. Sci. 2002, 82, 1227–1238.

    Google Scholar 

  51. Jiang, M.; Zhang, J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 2002, 53, 2401–2410.

    Article  Google Scholar 

  52. Begum, P.; Ikhtiari, R.; Fugetsu, B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 2011, 49, 3907–3919.

    Article  Google Scholar 

  53. Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 1997, 21, A.3B.1–A.3B.2.

    Google Scholar 

  54. Akhavan, O.; Ghaderi, E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 2012, 50, 1853–1860.

    Article  Google Scholar 

  55. Salas, E. C.; Sun, Z. Z.; Lüttge, A.; Tour, J. M. Reduction of graphene oxide via bacterial respiration. ACS Nano 2010, 4, 4852–4856.

    Article  Google Scholar 

  56. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (No. 2172027). D. L. acknowledges support from Australian Research Council (No. IH 150100003) ARC Research Hub for Graphene Enabled Industry Transformation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Qian, L., Liu, X. et al. Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers. Nano Res. 11, 6010–6022 (2018). https://doi.org/10.1007/s12274-018-2115-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2115-8

Keywords

Navigation