Skip to main content
Log in

Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper, a dual-ligand design strategy is demonstrated to modulate the performance of the electronically conductive metalorganic frameworks (EC-MOFs) thin film with a spray layer-by-layer assembly method. The thin film not only can be precisely prepared in nanometer scale (20–70 nm), but also shows the pin-hole-free smooth surface. The high quality nano-film of 2,3,6,7,10,11-hexaiminotriphenylene (HITP) doped Cu-HHTP enables the precise modulation of the chemiresistive sensitivity and selectivity. Selectivity improvement over 220% were realized for benzene vs. NH3, as well as enhanced response and recovery properties. In addition, the selectivity of the EC-MOF thin film sensors toward other gases (e.g. triethylamine, methane, ethylbenzene, hydrogen, butanone, and acetone) vs. NH3 at room temperature is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J. H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M. et al. π-conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc.2013, 135, 2462–2465.

    CAS  Google Scholar 

  2. Clough, A. J.; Skelton, J. M.; Downes, C. A.; De La Rosa, A. A.; Yoo, J. W.; Walsh, A.; Melot, B. C.; Marinescu, S. C. Metallic conductivity in a two-dimensional cobalt dithiolene metal-organic framework. J. Am. Chem. Soc.2017, 139, 10863–10867.

    CAS  Google Scholar 

  3. Koo, W. T.; Jang, J. S.; Kim, I. D. Metal-organic frameworks for chemiresistive sensors. Chem2019, 5, 1938–1963.

    CAS  Google Scholar 

  4. Dong, R. H.; Han, P.; Arora, H.; Ballabio, M.; Karakus, M.; Zhang, Z.; Shekhar, C.; Adler, P.; Petkov, P. S.; Erbe, A. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater.2018, 17, 1027–1032.

    CAS  Google Scholar 

  5. Yao, M. S.; Zheng, J. J.; Wu, A. Q.; Xu, G; Nagarkar, S. S.; Zhang, G; Tsujimoto, M.; Sakaki, S.; Horike, S.; Otake, K. et al. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew. Chem., Int. Ed.2020, 59, 172–176.

    CAS  Google Scholar 

  6. Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F. et al. New porous crystals of extended metal-catecholates. Chem. Mater.2012, 24, 3511–3513.

    CAS  Google Scholar 

  7. Huang, X.; Sheng, P.; Tu, Z. Y.; Zhang, F. J.; Wang, J. H.; Geng, H.; Zou, Y.; Di, C. A.; Yi, Y. P.; Sun, Y. M. et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun.2015, 6, 7408.

    CAS  Google Scholar 

  8. Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H. Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. Inorg. Chem.2009, 48, 9048–9050.

    CAS  Google Scholar 

  9. Erickson, K. J.; Léonard, F.; Stavila, V.; Foster, M. E.; Spataru, C. D.; Jones, R. E.; Foley, B. M.; Hopkins, P. E.; Allendorf, M. D.; Talin, A. A. Thin film thermoelectric metal-organic framework with high seebeck coefficient and low thermal conductivity. Adv. Mater.2015, 27, 3453–3459.

    CAS  Google Scholar 

  10. Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dinca, M. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J. Am. Chem. Soc.2015, 137, 1774–1777.

    CAS  Google Scholar 

  11. Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R. Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metalorganic framework. J. Am. Chem. Soc.2015, 137, 15703–15711.

    CAS  Google Scholar 

  12. Dong, R. H.; Zhang, Z. T.; Tranca, D. C.; Zhou, S. Q.; Wang, M. C.; Adler, P.; Liao, Z. Q.; Liu, F.; Sun, Y.; Shi, W. J. et al. A coronenebased semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun.2018, 9, 2637.

    Google Scholar 

  13. Ko, M.; Mendecki, L.; Mirica, K. A. Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun.2018, 54, 7873–7891.

    CAS  Google Scholar 

  14. Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev.2018, 118, 6189–6235.

    CAS  Google Scholar 

  15. Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun.2016, 7, 10942.

    CAS  Google Scholar 

  16. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater.2017, 16, 220–224.

    CAS  Google Scholar 

  17. Feng, D. W.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z. H.; Lee, M.; Shaw, L.; Chen, S. C.; Yakovenko, A. A.; Kulkarni, A. et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy2018, 3, 30–36.

    CAS  Google Scholar 

  18. Su, J.; He, W.; Li, X. M.; Sun, L.; Wang, H. Y.; Lan, Y. Q.; Ding, M. N.; Zuo, J. L. High electrical conductivity in a 2D MOF with intrinsic superprotonic conduction and interfacial pseudo-capacitance. Matter2020, 2, 711–722.

    Google Scholar 

  19. Wu, J.; Chen, J. H.; Wang, C.; Zhou, Y.; Ba, K.; Xu, H.; Bao, W. Z.; Xu, X. H.; Carlsson, A.; Lazar, S. et al. Metal-organic framework for transparent electronics. Adv. Sci.2020, 7, 1903003.

    CAS  Google Scholar 

  20. Yao, M. S.; Lv, X. J.; Fu, Z. H.; Li, W. H.; Deng, W. H.; Wu, G. D.; Xu, G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem, Int. Ed.2017, 56, 16510–16514.

    CAS  Google Scholar 

  21. Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metalorganic framework for chemiresistive sensing. Angew. Chem., Int. Ed.2015, 127, 4423–4426.

    Google Scholar 

  22. Yao, M. S.; Xiu, J. W.; Huang, Q. Q.; Li, W. H.; Wu, W. W.; Wu, A. Q.; Cao, L. A.; Deng, W. H.; Wang, G. E.; Xu, G. Van der waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem., Int. Ed.2019, 58, 14915–14919.

    CAS  Google Scholar 

  23. Meng, Z.; Aykanat, A.; Mirica, K. A. Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J. Am. Chem. Soc.2018, 141, 2046–2053.

    Google Scholar 

  24. Wu, G. D.; Huang, J. H.; Zang, Y.; He, J.; Xu, G. Porous field-effect transistors based on a semiconductive metal-organic framework. J. Am. Chem. Soc.2016, 139, 1360–1363.

    Google Scholar 

  25. Mu, Q. Q.; Zhu, W.; Li, X.; Zhang, C. F.; Su, Y. H.; Lian, Y. B.; Qi, P. W.; Deng, Z.; Zhang, D.; Wang, S. et al. Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Appl. Catal. B Environ.2020, 262, 118144.

    CAS  Google Scholar 

  26. Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on visible-light photocatalytic C–H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc.2019, 141, 19110–19117.

    CAS  Google Scholar 

  27. Jiang, H. Q.; Liu, X. C.; Wu, Y. S.; Shu, Y. F.; Gong, X.; Ke, F. S.; Deng, H. X. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem., Int. Ed.2018, 57, 3916–3921.

    CAS  Google Scholar 

  28. Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev.2019, 779, 478–598.

    Google Scholar 

  29. Sun, L.; Campbell, M. G.; Dincă M. Electrically conductive porous metal-organic frameworks. Angew. Chem., Int. Ed.2016, 55, 3566–3579.

    CAS  Google Scholar 

  30. Choi, S. J.; Kim, I. D. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett.2018, 14, 221–260.

    CAS  Google Scholar 

  31. Campbell, M. G.; Dincă, M. Metal-organic frameworks as active materials in electronic sensor devices. Sensors2017, 17, 1108.

    Google Scholar 

  32. Guo, L. L.; Chen, F.; Xie, N.; Kou, X. Y.; Wang, C.; Sun, Y. F.; Liu, F. M.; Liang, X. S.; Gao, Y.; Yan, X. et al. Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuators B Chem.2018, 272, 185–194.

    CAS  Google Scholar 

  33. Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q. Y.; Zhou, D. X.; Xia, Z.; Sargent, E. H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater.2014, 26, 2718–2724.

    CAS  Google Scholar 

  34. Jian, Y. Y.; Hu, W. W.; Zhao, Z. H.; Cheng, P. F.; Haick, H.; Yao, M. S.; Wu, W. W. Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett.2020, 12, 71.

    Google Scholar 

  35. Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. Mof thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv. Mater.2016, 28, 5229–5234.

    CAS  Google Scholar 

  36. Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater.2016, 28, 795–831.

    CAS  Google Scholar 

  37. Kim, H. J.; Lee, J. H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem.2014, 192, 607–627.

    CAS  Google Scholar 

  38. Li, T. M.; Zeng, W.; Wang, Z. C. Quasi-one-dimensional metaloxide-based heterostructural gas-sensing materials: A review. Sens. Actuators B Chem.2015, 221, 1570–1585.

    CAS  Google Scholar 

  39. Shi, Z. L.; Tao, Y.; Wu, J. S.; Zhang, C. Z.; He, H. L.; Long, L. L.; Lee, Y.; Li, T.; Zhang, Y. B. Robust metal-triazolate frameworks for CO2 capture from flue gas. J. Am. Chem. Soc.2020, 142, 2750–2754.

    CAS  Google Scholar 

  40. Heinke, L.; Wöll, C. Surface-mounted metal-organic frameworks: Crystalline and porous molecular assemblies for fundamental insights and advanced applications. Adv. Mater.2019, 31, 1806324.

    Google Scholar 

  41. Gu, Y. F.; Wu, Y. N.; Li, L. C.; Chen, W.; Li, F. T.; Kitagawa, S. Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem., Int. Ed.2017, 56, 15658–15662.

    CAS  Google Scholar 

  42. Shekhah, O.; Hirai, K.; Wang, H.; Uehara, H.; Kondo, M.; Diring, S.; Zacher, D.; Fischer, R. A.; Sakata, O.; Kitagawa, S. et al. MOF-on-MOF heteroepitaxy: Perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. Dalton Trans.2011, 40, 4954–4958.

    CAS  Google Scholar 

  43. Richardson, J. J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science2015, 348, aaa2491.

    Google Scholar 

  44. Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y. B.; Xu, G. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater.2017, 27, 1702067.

    Google Scholar 

  45. Hu, N. T.; Yang, Z.; Wang, Y. Y.; Zhang, L. L.; Wang, Y.; Huang, X. L.; Wei, H.; Wei, L. M.; Zhang, Y. F. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology2013, 25, 025502.

    Google Scholar 

  46. Chen, E. X.; Yang, H.; Zhang, J. Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem.2014, 53, 5411–5413.

    CAS  Google Scholar 

  47. Yao, M. S.; Li, Q. H.; Hou, G. L.; Lu, C.; Cheng, B. L.; Wu, K. C.; Xu, G.; Yuan, F. L.; Ding, F.; Chen, Y. F. Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties. ACS Appl. Mater. Interfaces2015, 7, 2856–2866.

    CAS  Google Scholar 

  48. Yao, M. S.; Cao, L. A.; Tang, Y. X.; Wang, G. E.; Liu, R. H.; Kumar, P. N.; Wu, G. D.; Deng, W. H.; Hong, W. J.; Xu, G. Gas transport regulation in a MO/MOF interface for enhanced selective gas detection. J. Mater. Chem. A2019, 7, 18397–18403.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21801243, 21822109, 21975254, 21773245, 21850410462, and 21805276), the Key Research Program of Frontier Science, CAS (No. QYZDB-SSW-SLH023), China Postdoctoral Science Foundation (Nos. 2018M642576 and 2018M642578), International Partnership Program of CAS (No. 121835KYSB201800), the Natural Science Foundation of Fujian Province (No. 2019J01129), and the Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Shui Yao or Gang Xu.

Electronic Supplementary Material

12274_2020_2823_MOESM1_ESM.pdf

Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, AQ., Wang, WQ., Zhan, HB. et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Res. 14, 438–443 (2021). https://doi.org/10.1007/s12274-020-2823-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2823-8

Keywords

Navigation