Skip to main content
Log in

Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene (Gr)/Si-based optoelectronic devices have attracted a lot of academic attention due to the simpler fabrication processes, low costs, and higher performance of their two-dimensional (2D)/three-dimensional (3D) hybrid interfaces in Schottky junction that promotes electron-hole separation. However, due to the built-in potential of Gr/Si as a photodetector, the Iph /Idark ratio is often hindered near zero-bias at relatively low illumination intensity. This is a major drawback in self-powered photodetectors. In this study, we have demonstrated a self-powered van der Waals heterostructure photodetector in the visible range using a Gr/hexagonal boron nitride (h-BN)/Si structure and clarified that the thin h-BN insertion can engineer asymmetric carrier transport and avoid interlayer coupling at the interface. The dark current was able to be suppressed by inserting an h-BN insulator layer, while maintaining the photocurrent with minimal decrease at near zero-bias. As a result, the normalized photocurrent-to-dark ratio (NPDR) is improved more than 104 times. Also, both Iph/Idark ratio and detectivity, increase by more than 104 times at −0.03 V drain voltage. The proposed Gr/h-BN/Si heterostructure is able to contribute to the introduction of next-generation photodetectors and photovoltaic devices based on graphene or silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Grigorieva, I. V. Van der waals heterostructures. Nature2013, 499, 419–425.

    CAS  Google Scholar 

  2. Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics2010, 4, 297–301.

    CAS  Google Scholar 

  3. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science2007, 317, 932–934.

    CAS  Google Scholar 

  4. Yu, W. J.; Li, Z.; Zhou, H. L.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246–252.

    CAS  Google Scholar 

  5. Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.

    CAS  Google Scholar 

  6. Wang, J. G.; Ma, F. C.; Sun, M. T. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822.

    CAS  Google Scholar 

  7. Yu, T.; Wang, F.; Xu, Y.; Ma, L. L.; Pi, X. D.; Yang, D. R. Graphene coupled with silicon quantum dots for high-performance bulksilicon- based Schottky-junction photodetectors. Adv. Mater. 2016, 28, 4912–4919.

    CAS  Google Scholar 

  8. Lv, P.; Zhang, X. J.; Zhang, X. W.; Deng, W.; Jie, J. S. High-sensitivity and fast-response graphene/crystalline silicon Schottky junctionbased near-IR photodetectors. IEEE Electron Device Lett. 2013, 34, 1337–1339.

    CAS  Google Scholar 

  9. Li, X. M.; Zhu, H. W.; Wang, K. L.; Cao, A. Y.; Wei, J. Q.; Li, C. Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D. H. Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 2010, 22, 2743–2748.

    CAS  Google Scholar 

  10. Miao, X. C.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745–2750.

    CAS  Google Scholar 

  11. Kim, H. Y.; Lee, K.; McEvoy, N.; Yim, C.; Duesberg, G. S. Chemically modulated graphene diodes. Nano Lett. 2013, 13, 2182–2188.

    CAS  Google Scholar 

  12. Shi, E. Z.; Li, H. B.; Yang, L.; Zhang, L. H.; Li, Z. H.; Li, P. X.; Shang, Y. Y.; Wu, S. T.; Li, X. M.; Wei, J. Q. et al. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013, 13, 1776–1781.

    CAS  Google Scholar 

  13. Song, Y.; Li, X. M.; Mackin, C.; Zhang, X.; Fang, W. J.; Palacios, T.; Zhu, H. W.; Kong, J. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett. 2015, 15, 2104–2110.

    CAS  Google Scholar 

  14. Jiao, K. J.; Wang, X. L.; Wang, Y.; Chen, Y. F. Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J. Mater. Chem. C2014, 2, 7715–7721.

    CAS  Google Scholar 

  15. Li, X. M.; Zhu, M.; Du, M. D.; Lv, Z.; Zhang, L.; Li, Y. C.; Yang, Y.; Yang, T. T.; Li, X.; Wang, K. L. et al. High detectivity graphenesilicon heterojunction photodetector. Small2016, 12, 595–601.

    CAS  Google Scholar 

  16. Luo, L. B.; Zeng, L. H.; Xie, C.; Yu, Y. Q.; Liang, F. X.; Wu, C. Y.; Wang, L.; Hu, J. G. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci. Rep. 2015, 4, 3914.

    Google Scholar 

  17. Periyanagounder, D.; Gnanasekar, P.; Varadhan, P.; He, J. H.; Kulandaivel, J. High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode. J. Mater. Chem. C2018, 6, 9545–9551.

    CAS  Google Scholar 

  18. Ji, C. H.; Kim, K. T.; Oh, S. Y. High-detectivity perovskite-based photodetector using a Zr-doped TiOx cathode interlayer. RSC Adv. 2018, 8, 8302–8309.

    CAS  Google Scholar 

  19. Di Bartolomeo, A.; Luongo, G.; Giubileo, F.; Funicello, N.; Niu, G.; Schroeder, T.; Lisker, M.; Lupina, G. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Mater. 2017, 4, 025075.

    Google Scholar 

  20. Riazimehr, S.; Bablich, A.; Schneider, D.; Kataria, S.; Passi, V.; Yim, C.; Duesberg, G. S.; Lemme, M. C. Spectral sensitivity of graphene/silicon heterojunction photodetectors. Solid-State Electron. 2016, 115, 207–212.

    CAS  Google Scholar 

  21. Riazimehr, S.; Kataria, S.; Bornemann, R.; Bolívar, P. H.; Ruiz, F. J. G.; Engström, O.; Godoy, A.; Lemme, M. C. High photocurrent in gated graphene-silicon hybrid photodiodes. ACS Photonics2017, 4, 1506–1514.

    CAS  Google Scholar 

  22. Wang, C. X.; Dong, Y.; Lu, Z. J.; Chen, S. R.; Xu, K. W.; Ma, Y. M.; Xu, G. B.; Zhao, X. Y.; Yu, Y. Q. High responsivity and high-speed 1.55 μm infrared photodetector from self-powered graphene/Si heterojunction. Sens. Actuators, A: Phys. 2019, 291, 87–92.

    CAS  Google Scholar 

  23. Chen, C. C.; Aykol, M.; Chang, C. C.; Levi, A. F. J.; Cronin, S. B. Graphene-silicon Schottky diodes. Nano Lett. 2011, 11, 1863–1867.

    CAS  Google Scholar 

  24. Ng, K. K.; Card, H. C. Asymmetry in the SiO2 tunneling barriers to electrons and holes. J. Appl. Phys. 1980, 51, 2153–2157.

    CAS  Google Scholar 

  25. Sinha, D.; Lee, J. U. Ideal graphene/silicon Schottky junction diodes. Nano Lett. 2014, 14, 4660–4664.

    CAS  Google Scholar 

  26. Green, M. A.; Keevers, M. J. Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 1995, 3, 189–192.

    CAS  Google Scholar 

  27. Song, X. J.; Gao, T.; Nie, Y. F.; Zhuang, J. N.; Sun, J. Y.; Ma, D. L.; Shi, J. P.; Lin, Y. W.; Ding, F.; Zhang, Y. F. et al. Seed-assisted growth of single-crystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition. Nano Lett. 2016, 16, 6109–6116.

    CAS  Google Scholar 

  28. Li, X. Q.; Lin, S. S.; Lin, X.; Xu, Z. J.; Wang, P.; Zhang, S. J.; Zhong, H. K.; Xu, W. L.; Wu, Z. Q.; Fang, W. Graphene/h-BN/GaAs Sandwich Diode as Solar Cell and Photodetector. Opt. Express2016, 24, 134–145.

    CAS  Google Scholar 

  29. Meng, J. H.; Liu, X.; Zhang, X. W.; Zhang, Y.; Wang, H. L.; Yin, Z. G.; Zhang, Y. Z.; Liu, H.; You, J. B.; Yan, H. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy2016, 28, 44–50.

    CAS  Google Scholar 

  30. Powers, M. J.; Benjamin, M. C.; Porter, L. M.; Nemanich, R. J.; Davis, R. F.; Cuomo, J. J.; Doll, G. L.; Harris, S. J. Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett. 1995, 67, 3912–3914.

    CAS  Google Scholar 

  31. Loh, K. P.; Sakaguchi, I.; Gamo, M. N.; Tagawa, S.; Sugino, T.; Ando, T. Surface conditioning of chemical vapor deposited hexagonal boron nitride film for negative electron affinity. Appl. Phys. Lett. 1999, 74, 28–30.

    CAS  Google Scholar 

  32. Yamada, T.; Masuzawa, T.; Ebisudani, T.; Okano, K.; Taniguchi, T. Field emission characteristics from graphene on hexagonal boron nitride. Appl. Phys. Lett. 2014, 104, 221603.

    Google Scholar 

  33. Vu, Q. A.; Lee, J. H.; Nguyen, V. L.; Shin, Y. S.; Lim, S. C.; Lee, K.; Heo, J.; Park, S.; Kim, K.; Lee, Y. H. et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett. 2017, 17, 453–459.

    CAS  Google Scholar 

  34. Li, H.; Li, X. M.; Park, J. H.; Tao, L.; Kim, K. K.; Lee, Y. H.; Xu, J. B. Bin. Restoring the photovoltaic effect in graphene-based van der waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy2019, 57, 214–221.

    CAS  Google Scholar 

  35. Lee, W. C.; Tsai, M. L.; Chen, Y. L.; Tu, W. C. Fabrication and analysis of chemically-derived graphene/pyramidal Si heterojunction solar cells. Sci. Rep. 2017, 7, 46478.

    CAS  Google Scholar 

  36. Liu, Y.; Sun, S. H.; Xu, J.; Zhao, L.; Sun, H. C.; Li, J.; Mu, W. W.; Xu, L.; Chen, K. J. Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells. Opt. Express2011, 19, A1051–A1056.

    CAS  Google Scholar 

  37. Huang, K.; Yan, Y. C.; Li, K.; Khan, A.; Zhang, H.; Pi, X. D.; Yu, X. G.; Yang, D. R. High and fast response of a graphene-silicon photodetector coupled with 2D fractal platinum nanoparticles. Adv. Opt. Mater. 2018, 6, 1700793.

    Google Scholar 

  38. An, Y. B.; Behnam, A.; Pop, E.; Bosman, G.; Ural, A. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/ silicon Schottky junctions with an interfacial native oxide layer. J. Appl. Phys. 2015, 118, 114307.

    Google Scholar 

  39. Riazimehr, S.; Kataria, S.; Gonzalez-Medina, J. M.; Wagner, S.; Shaygan, M.; Suckow, S.; Ruiz, F. G.; Engström, O.; Godoy, A.; Lemme, M. C. High responsivity and quantum efficiency of graphene/ silicon photodiodes achieved by interdigitating Schottky and gated regions. ACS Photonics2019, 6, 107–115.

    CAS  Google Scholar 

  40. An, X. D.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

    CAS  Google Scholar 

  41. Wang, X. M.; Cheng, Z. Z.; Xu, K.; Tsang, H. K.; Xu, J. B. Highresponsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics2013, 7, 888–891.

    CAS  Google Scholar 

  42. Wan, X.; Xu, Y.; Guo, H. W.; Shehzad, K.; Ali, A.; Liu, Y.; Yang, J. Y.; Dai, D. X.; Lin, C. T.; Liu, L. W. et al. A self-powered highperformance graphene/silicon ultraviolet photodetector with ultrashallow junction: Breaking the limit of silicon? npj 2D Mater. Appl. 2017, 1, 4.

    Google Scholar 

  43. Xiang, D.; Han, C.; Hu, Z. H.; Lei, B.; Liu, Y. Y.; Wang, L.; Hu, W. P.; Chen, W. Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector. Small2015, 11, 4829–4836.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A2B2008069), R&D program of MOTIE/KEIT (No. 10064078), and Multi-Ministry Collaborative R&D Program through the National Research Foundation of Korea, funded by KNPA, MSIT, MOTIE, ME, and NFA (No. 2017M3D9A1073539). This work was supported under the framework of international cooperation program managed by the National Research Foundation of Korea (No. 2018K2A9A2A06017491). Y. H. L. acknowledges this work was supported from the Institute for Basic Science (No. IBS-R011-D1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Jong Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, U.Y., Lee, B.H., Kim, Y.R. et al. Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector. Nano Res. 14, 1967–1972 (2021). https://doi.org/10.1007/s12274-020-2866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2866-x

Keywords

Navigation