Skip to main content
Log in

Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no method to tune the size of ultrasmall aluminum nanocrystals in solution thus no knowledge on the boundary state between aluminum nanoclusters to plasmonic nanoparticles. In this work, it is demonstrated a study of size-controlled solution synthesis of ultrasmall aluminum nanocrystals with size controlled between ∼ 2.2 to ∼ 3.8 nm. Increasing the size results in three sets of spectral responses: (1) absorption due to nascent plasmons generated at ∼ 340 nm for larger particles, confirmed by Mie theory calculations; (2) significant decreased quantum yield of PL from ∼ 7.8% to ∼ 2.4%, indicating reduced quantum confinement effects and increased metallicity; (3) drop of fluorescence lifetime was observed, especially when the diameter of aluminum nanoparticles was changed from ∼ 3.0 to ∼ 3.8 nm. This study provides experimental evidence and insights to the transitional state between aluminum nanoclusters to plasmonic nanoparticles, which seems to occur at size larger than gold nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    Article  CAS  Google Scholar 

  2. Zhou, M.; Higaki, T.; Li, Y. W.; Zeng, C. J.; Li, Q.; Sfeir, M. Y.; Jin, R. C. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754–19764.

    Article  CAS  Google Scholar 

  3. Higaki, T.; Zhou, M.; He, G. Y.; House, S. D.; Sfeir, M. Y.; Yang, J. C.; Jin, R. C. Anomalous phonon relaxation in Au333(SR)79 nanoparticles with nascent plasmons. Proc. Natl. Acad. Sci. USA 2019, 116, 13215–13220.

    Article  CAS  Google Scholar 

  4. Liu, L.; Han, Z. H.; He, S. L. Novel surface plasmon waveguide for high integration. Opt. Express 2005, 13, 6645–6650.

    Article  Google Scholar 

  5. Brus, L. Size, dimensionality, and strong electron correlation in nanoscience. Acc. Chem. Res. 2014, 47, 2951–2959.

    Article  CAS  Google Scholar 

  6. Fan, J. A.; Wu, C. H.; Bao, K.; Bao, J. M.; Bardhan, R.; Halas, N. J.; Manoharan, V. N.; Nordlander, P.; Shvets, G.; Capasso, F. Self-assembled plasmonic nanoparticle clusters. Science 2010, 328, 1135–1138.

    Article  CAS  Google Scholar 

  7. Yang, T. H.; Shi, Y. F.; Janssen, A.; Xia, Y. N. Surface capping agents and their roles in shape-controlled synthesis of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2020, 59, 15378–15401.

    Article  CAS  Google Scholar 

  8. Su, Y.; Xue, T. T.; Liu, Y. X.; Qi, J. X.; Jin, R. C.; Lin, Z. K. Luminescent metal nanoclusters for biomedical applications. Nano Res. 2019, 12, 1251–1265.

    Article  CAS  Google Scholar 

  9. Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.; Everitt, H. O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017, 8, 14542.

    Article  CAS  Google Scholar 

  10. Li, Q.; Zhou, D. M.; Chai, J. S.; So, W. Y.; Cai, T.; Li, M. X.; Peteanu, L. A.; Chen, O.; Cotlet, M.; Gu, X. W. et al. Structural distortion and electron redistribution in dual-emitting gold nanoclusters. Nat. Commun. 2020, 11, 2897.

    Article  CAS  Google Scholar 

  11. Xu, W. W.; Zeng, X. C.; Gao, Y. Application of electronic counting rules for ligand-protected gold nanoclusters. Acc. Chem. Res. 2018, 51, 2739–2747.

    Article  CAS  Google Scholar 

  12. Hu, J. T.; Wang, D. Q.; Bhowmik, D.; Liu, T. T.; Deng, S. K.; Knudson, M. P.; Ao, X. Y.; Odom, T. W. Lattice-resonance metalenses for fully reconfigurable imaging. Acs Nano 2019, 13, 4613–4620.

    Article  CAS  Google Scholar 

  13. Khan, A.; Balakrishnan, K.; Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2008, 2, 77–84.

    Article  CAS  Google Scholar 

  14. Kneissl, M.; Seong, T. Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244.

    Article  CAS  Google Scholar 

  15. Adamopoulos, G.; Bashir, A.; Gillin, W. P.; Georgakopoulos, S.; Shkunov, M.; Baklar, M. A.; Stingelin, N.; Bradley, D. D. C.; Anthopoulos, T. D. Structural and electrical characterization of zno films grown by spray pyrolysis and their application in thin-film transistors. Adv. Funct. Mater. 2011, 21, 525–531.

    Article  CAS  Google Scholar 

  16. Liu, L. T.; Aleisa, R.; Zhang, Y.; Feng, J.; Zheng, Y. Q.; Yin, Y. D.; Wang, W. S. Dynamic color-switching of plasmonic nanoparticle films. Angew. Chem., Int. Ed. 2019, 58, 16307–16313.

    Article  CAS  Google Scholar 

  17. Kumamoto, Y.; Taguchi, A.; Kawata, S. Deep-ultraviolet biomolecular imaging and analysis. Adv. Opt. Mater. 2019, 7, 1801099.

    Article  Google Scholar 

  18. Renard, D.; Tian, S.; Ahmadivand, A.; DeSantis, C. J.; Clark, B. D.; Nordlander, P.; Halas, N. J. Polydopamine-stabilized aluminum nanocrystals: Aqueous stability and benzo[a]pyrene detection. Acs Nano 2019, 13, 3117–3124.

    Article  CAS  Google Scholar 

  19. Gong, L.; Zheng, W.; Ma, Y.; Huang, Z. W. Saturated stimulated-Raman-scattering microscopy for far-field superresolution vibrational imaging. Phys. Rev. Appl. 2019, 11, 034041.

    Article  CAS  Google Scholar 

  20. Jin, S. Q.; Fan, F. T.; Guo, M. L.; Zhang, Y.; Feng, Z. C.; Li, C. Note: Deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application. Rev. Sci. Instrum. 2014, 85, 046105.

    Article  Google Scholar 

  21. Xia, J.; Tang, J. W.; Bao, F. L.; Sun, Y. C.; Fang, M. D.; Cao, G. J.; Evans, J.; He, S. L. Turning a hot spot into a cold spot: Polarization-controlled fano-shaped local-field responses probed by a quantum dot. Light Sci. Appl. 2020, 9, 166.

    Article  CAS  Google Scholar 

  22. Chen, Q.; Chen, J. W.; Yang, Z. J.; Zhang, L.; Dong, Z. L.; Liu, Z. NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. Nano Res. 2018, 11, 5657–5669.

    Article  CAS  Google Scholar 

  23. Gérard, D.; Gray, S. K. Special issue on aluminium plasmonics. J. Phys. D Appl. Phys. 2015, 48, 180301.

    Article  Google Scholar 

  24. Gérard, D.; Gray, S. K. Aluminium plasmonics. J. Phys. D Appl. Phys. 2014, 48, 184001.

    Article  Google Scholar 

  25. Clark, B. D.; DeSantis, C. J.; Wu, G.; Renard, D.; McClain, M. J.; Bursi, L.; Tsai, A. L.; Nordlander, P.; Halas, N. J. Ligand-dependent colloidal stability controls the growth of aluminum nanocrystals. J. Am. Chem. Soc. 2019, 141, 1716–1724.

    Article  CAS  Google Scholar 

  26. Lu, S. Y.; Yu, H.; Gottheim, S.; Gao, H. M.; DeSantis, C. J.; Clark, B. D.; Yang, J.; Jacobson, C. R.; Lu, Z. Y.; Nordlander, P. et al. Polymer-directed growth of plasmonic aluminum nanocrystals. J. Am. Chem. Soc. 2018, 140, 15412–15418.

    Article  CAS  Google Scholar 

  27. Chen, R. Z.; Cheng, X. Y.; Zhang, C.; Wu, H.; Zhu, H. M.; He, S. L. Sub-3 nm aluminum nanocrystals exhibiting cluster-like optical properties. Small, in press, DOI: https://doi.org/10.1002/smll.202002524.

  28. Luo, Z. X.; Grover, C. J.; Reber, A. C.; Khanna, S. N.; Castleman, A. W. Jr. Probing the magic numbers of aluminum-magnesium cluster anions and their reactivity toward oxygen. J. Am. Chem. Soc. 2013, 135, 4307–4313.

    Article  CAS  Google Scholar 

  29. Chen, J.; Luo, Z. X.; Yao, J. N. Theoretical study of tetrahydrofuran-stabilized Al13 superatom cluster. J. Phys. Chem. A 2016, 120, 3950–3957.

    Article  CAS  Google Scholar 

  30. Yau, S. H.; Varnavski, O.; Goodson III, T. An ultrafast look at au nanoclusters. Acc. Chem. Res. 2013, 46, 1506–1516.

    Article  CAS  Google Scholar 

  31. Shiles, E.; Sasaki, T.; Inokuti, M.; Smith, D. Y. Self-consistency and sum-rule tests in the kramers-kronig analysis of optical data: Applications to aluminum. Phys. Rev. B 1980, 22, 1612–1628.

    Article  CAS  Google Scholar 

  32. Gérard, D.; Gray, S. K. Aluminium plasmonics. J. Phys. D: Appl. Phys. 2014, 48, 184001.

    Article  Google Scholar 

  33. Paniagua, S. A.; Giordano, A. J.; Smith, O. L.; Barlow, S.; Li, H.; Armstrong, N. R.; Pemberton, J. E.; Brédas, J. L.; Ginger, D.; Marder, S. R. Phosphonic acids for interfacial engineering of transparent conductive oxides. Chem. Rev. 2016, 116, 7117–7158.

    Article  CAS  Google Scholar 

  34. Opitz, A.; Peter, C.; Wegner, B.; Matte, H. S. S. R.; Röttger, A.; Florian, T.; Xu, X. M.; Beyer, P.; Grubert, L.; Hecht, S. et al. Ordered donor-acceptor complex formation and electron transfer in co-deposited films of structurally dissimilar molecules. J. Phys. Chem. C 2020, 124, 11023–11031.

    Article  CAS  Google Scholar 

  35. Cheng, X. Y.; Lowe, S. B.; Reece, P. J.; Gooding, J. J. Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680–2700.

    Article  CAS  Google Scholar 

  36. Gooding, J. J.; Ciampi, S. The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 2011, 40, 2704–2718.

    Article  CAS  Google Scholar 

  37. Haber, J. A.; Buhro, W. E. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. J. Am. Chem. Soc. 1998, 120, 10847–10855.

    Article  CAS  Google Scholar 

  38. Correa, N. M.; Silber, J. J.; Riter, R. E.; Levinger, N. E. Nonaqueous polar solvents in reverse micelle systems. Chem. Rev. 2012, 112, 4569–4602.

    Article  CAS  Google Scholar 

  39. Falcone, R. D.; Silber, J. J.; Correa, N. M. What are the factors that control non-aqueous/AOT/n-heptane reverse micelle sizes? A dynamic light scattering study. Phys. Chem. Chem. Phys. 2009, 11, 11096–11100.

    Article  CAS  Google Scholar 

  40. Riter, R. E.; Kimmel, J. R.; Undiks, E. P.; Levinger, N. E. Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase. J. Phys. Chem. B 1997, 101, 8292–8297.

    Article  CAS  Google Scholar 

  41. Falcone, R. D.; Correa, N. M.; Biasutti, M. A.; Silber, J. J. Properties of AOT aqueous and nonaqueous microemulsions sensed by optical molecular probes. Langmuir 2000, 16, 3070–3076.

    Article  CAS  Google Scholar 

  42. Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560.

    Article  CAS  Google Scholar 

  43. Knight, M. W.; King, N. S.; Liu, L. F.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum for plasmonics. ACS Nano 2014, 8, 834–840.

    Article  CAS  Google Scholar 

  44. Wan, X. L.; Lieberman, I.; Asyuda, A.; Resch, S.; Seim, H.; Kirsch, P.; Zharnikov, M. Thermal stability of phosphonic acid self-assembled monolayers on alumina substrates. J. Phys. Chem. C 2020, 124, 2531–2542.

    Article  CAS  Google Scholar 

  45. Luo, Y.; Zhao, J. Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures. Nano Res. 2019, 12, 2164–2171.

    Article  CAS  Google Scholar 

  46. Marinica, D. C.; Kazansky, A. K.; Nordlander, P.; Aizpurua, J.; Borisov, A. G. Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 2012, 12, 1333–1339.

    Article  CAS  Google Scholar 

  47. Huang, Q. S.; Bao, F. L.; He, S. L. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Opt. Express 2013, 21, 1430–1439.

    Article  CAS  Google Scholar 

  48. Cheng, C.; Li, J. J.; Cheng, X. Y. Photoluminescence lifetime and absorption spectrum of PbS nanocrystal quantum dots. J. Lumin. 2017, 188, 252–257.

    Article  CAS  Google Scholar 

  49. Bowman, R. M.; Chamberlain, T. R.; Huang, C. W.; McCullough, J. J. Medium effects and quantum yields in the photoaddition of naphthalene and acrylonitrile. Chemical evidence on an exciplex structure. J. Am. Chem. Soc. 1974, 96, 692–700.

    Article  CAS  Google Scholar 

  50. Wu, Z. K.; Jin, R. C. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.

    Article  CAS  Google Scholar 

  51. Chen, S.; Liu, J. W.; Chen, M. L.; Chen, X. W.; Wang, J. H. Unusual emission transformation of graphenequantum dots induced by self-assembled aggregation. Chem. Commun. 2012, 48, 7637–7639.

    Article  CAS  Google Scholar 

  52. Liu, F.; Jang, M. H.; Ha, H. D.; Kim, J. H.; Cho, Y. H.; Seo, T. S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence. Adv. Mater. 2013, 25, 3657–3662.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (Nos. 61905211, 91833303, 11621101, and 61774131), the National Key Research and Development Program of China (No. 2017YFA0205700), Science Foundation of Zhejiang Province (No. Y21B050009), the Fundamental Research Funds for the Central Universities (Nos. 511308*172210191 and 2019FZA5002), and Ningbo Science and Technology Project (No. 2018B10093). We wish to thank Prof. Y. Jin of College of Optical Science and Engineering, Zhejiang University, for valuable discussions on FDTD simulations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Cheng or Sailing He.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Cheng, X., Dong, H. et al. Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence. Nano Res. 15, 838–844 (2022). https://doi.org/10.1007/s12274-021-3486-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3486-9

Keywords

Navigation