Skip to main content
Log in

Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Endowing bilayer transition-metal dichalcogenides (TMDs) with tunable magnetism is significant to investigate the coupling of multiple electron degrees of freedom (DOFs). However, effectively inducing and tuning the magnetic interaction of bilayer TMDs are still challenges. Herein, we report a strategy to tune the interlayer exchange interaction of centimeter-scale MoS2 bilayer with substitutional doping of Co ion, by introducing sulfur vacancy (VS) to modulate the interlayer electronic coupling. This strategy could transform the interlayer exchange interaction from antiferromagnetism (AFM) to ferromagnetism (FM), as revealed by the magnetic measurements. Experimental characterizations and theoretical calculations indicate that the enhanced magnetization is mainly because the hybridization of Co 3d band and VS-induced impurity band alters the forms of interlayer orbital hybridizations between the partial Co atoms in upper and lower layers, and also enhances the intralayer FM. Our work paves the way for tuning the interlayer exchange interaction with defects and could be extended to other two-dimensional (2D) magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  2. Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

    Article  CAS  Google Scholar 

  3. Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.

    Article  CAS  Google Scholar 

  4. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    Article  CAS  Google Scholar 

  5. Yuan, H. T.; Bahramy, M. S.; Morimoto, K.; Wu, S. F.; Nomura, K.; Yang, B. J.; Shimotani, H.; Suzuki, R.; Toh, M.; Kloc, C. et al. Zeeman-type spin splitting controlled by an electric field. Nat. Phys. 2013, 9, 563–569.

    Article  CAS  Google Scholar 

  6. Fei, Z. Y.; Zhao, W. J.; Palomaki, T. A.; Sun, B. S.; Miller, M. K.; Zhao, Z. Y.; Yan, J. Q.; Xu, X. D.; Cobden, D. H. Ferroelectric switching of a two-dimensional metal. Nature 2018, 560, 336–339.

    Article  CAS  Google Scholar 

  7. Li, L.; Wu, M. H. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 2017, 11, 6382–6388.

    Article  CAS  Google Scholar 

  8. Wu, S. F.; Ross, J. S.; Liu, G. B.; Aivazian, G.; Jones, A.; Fei, Z. Y.; Zhu, W. G.; Xiao, D.; Yao, W.; Cobden, D. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149–153.

    Article  CAS  Google Scholar 

  9. Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 2016, 11, 421–425.

    Article  CAS  Google Scholar 

  10. Liu, X. E.; Pyatakov, A. P.; Ren, W. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 2020, 125, 247601.

    Article  CAS  Google Scholar 

  11. Jones, A. M.; Yu, H. Y.; Ross, J. S.; Klement, P.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 2014, 10, 130–134.

    Article  CAS  Google Scholar 

  12. Cheng, Y. C.; Zhu, Z. Y.; Mi, W. B.; Guo, Z. B.; Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401.

    Article  Google Scholar 

  13. Fu, S. C.; Kang, K.; Shayan, K.; Yoshimura, A.; Dadras, S.; Wang, X. T.; Zhang, L. H.; Chen, S. W.; Liu, N.; Jindal, A. et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun. 2020, 11, 2034.

    Article  CAS  Google Scholar 

  14. Ramasubramaniam, A.; Naveh, D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B 2013, 87, 195201.

    Article  Google Scholar 

  15. Chen, W. J.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

    Article  CAS  Google Scholar 

  16. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    Article  CAS  Google Scholar 

  17. Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

    Article  CAS  Google Scholar 

  18. Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    Article  CAS  Google Scholar 

  19. Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    Article  CAS  Google Scholar 

  20. Sivadas, N.; Okamoto, S.; Xu, X. D.; Fennie, C. J.; Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 2018, 18, 7658–7664.

    Article  CAS  Google Scholar 

  21. Jiang, P. H.; Wang, C.; Chen, D. C.; Zhong, Z. C.; Yuan, Z.; Lu, Z. Y.; Ji, W. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 2019, 99, 144401.

    Article  CAS  Google Scholar 

  22. Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

    Article  CAS  Google Scholar 

  23. Li, T. X.; Jiang, S. W.; Sivadas, N.; Wang, Z. F.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308.

    Article  CAS  Google Scholar 

  24. Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. A.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

    Article  CAS  Google Scholar 

  25. Huang, S. X.; Ling, X.; Liang, L. B.; Kong, J.; Terrones, H.; Meunier, V.; Dresselhaus, M. S. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 2014, 14, 5500–5508.

    Article  CAS  Google Scholar 

  26. van der Zande, A. M.; Kunstmann, J.; Chernikov, A.; Chenet, D. A.; You, Y. M.; Zhang, X. X.; Huang, P. Y.; Berkelbach, T. C.; Wang, L.; Zhang, F. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014, 14, 3869–3875.

    Article  CAS  Google Scholar 

  27. Tian, X. Z.; Kim, D. S.; Yang, S. Z.; Ciccarino, C. J.; Gong, Y. J.; Yang, Y.; Yang, Y.; Duschatko, B.; Yuan, Y. K.; Ajayan, P. M. et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat. Mater. 2020, 19, 867–873.

    Article  CAS  Google Scholar 

  28. Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972.

    Article  CAS  Google Scholar 

  29. Park, S.; Park, J.; Abroshan, H.; Zhang, L.; Kim, J. K.; Zhang, J. M.; Guo, J. H.; Siahrostami, S.; Zheng, X. L. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition. ACS Energy Lett. 2018, 3, 2685–2693.

    Article  CAS  Google Scholar 

  30. Hu, J. T.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q. H.; Wen, W.; Yu, S. S.; Pan, Y. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250.

    Article  CAS  Google Scholar 

  31. Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

    Article  CAS  Google Scholar 

  32. Wang, S. S.; Pacios, M.; Bhaskaran, H.; Warner, J. H. Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition. Nanotechnology 2016, 27, 085604.

    Article  Google Scholar 

  33. Shepherd, W. H. Doping of epitaxial silicon films. J. Electrochem. Soc. 1968, 115, 541–545.

    Article  CAS  Google Scholar 

  34. Wu, T. Y. Some morphological studies for optimum growth conditions of vapor epitaxial GaAs1−xPx. J. Cryst. Growth 1974, 21, 85–92.

    Article  CAS  Google Scholar 

  35. Lee, J.; Pak, S.; Giraud, P.; Lee, Y. W.; Cho, Y.; Hong, J.; Jang, A. R.; Chung, H. S.; Hong, W. K.; Jeong, H. Y. et al. Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n-n heterojunction devices. Adv. Mater. 2017, 29, 1702206.

    Article  Google Scholar 

  36. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

    Article  CAS  Google Scholar 

  37. Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    Article  CAS  Google Scholar 

  38. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  CAS  Google Scholar 

  39. Zhang, L. L.; Wang, G.; Zhang, Y. B.; Cao, Z. P.; Wang, Y.; Cao, T. J.; Wang, C.; Cheng, B.; Zhang, W. Q.; Wan, X. G. et al. Tuning electrical conductance in bilayer MoS2 through defect-mediated interlayer chemical bonding. ACS Nano 2020, 14, 10265–10275.

    Article  CAS  Google Scholar 

  40. Gerber, I. C.; Courtade, E.; Shree, S.; Robert, C.; Taniguchi, T.; Watanabe, K.; Balocchi, A.; Renucci, P.; Lagarde, D.; Marie, X. et al. Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature. Phys. Rev. B 2019, 99, 035443.

    Article  CAS  Google Scholar 

  41. Dhall, R.; Neupane, M. R.; Wickramaratne, D.; Mecklenburg, M.; Li, Z.; Moore, C.; Lake, R. K.; Cronin, S. Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling. Adv. Mater. 2015, 27, 1573–1578.

    Article  CAS  Google Scholar 

  42. Xia, M.; Li, B.; Yin, K. B.; Capellini, G.; Niu, G.; Gong, Y. J.; Zhou, W.; Ajayan, P. M.; Xie, Y. H. Spectroscopic signatures of AA′ and AB stacking of chemical vapor deposited bilayer MoS2. ACS Nano 2015, 9, 12246–12254.

    Article  CAS  Google Scholar 

  43. Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.

    Article  CAS  Google Scholar 

  44. Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.

    Article  CAS  Google Scholar 

  45. Plechinger, G.; Mooshammer, F.; Castellanos-Gomez, A.; Steele, G.; Schüller, C.; Korn, T. Optical spectroscopy of interlayer coupling in artificially stacked MoS2 layers. 2D Mater. 2015, 2, 034016.

    Article  Google Scholar 

  46. Matte, H. S. S. R.; Subrahmanyam, K. S.; Rao, C. N. R. Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects. J. Phys. Chem. C 2009, 113, 9982–9985.

    Article  CAS  Google Scholar 

  47. Radhakrishnan, S.; Das, D.; Samanta, A.; de los Reyes, C. A.; Deng, L. Z.; Alemany, L. B.; Weldeghiorghis, T. K.; Khabashesku, V. N.; Kochat, V.; Jin, Z. H. et al. Fluorinated h-BN as a magnetic semiconductor. Sci. Adv. 2017, 3, e1700842.

    Article  Google Scholar 

  48. Coey, J. M. D.; Venkatesan, M.; Fitzgerald, C. B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4, 173–179.

    Article  CAS  Google Scholar 

  49. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 1959, 10, 87–98.

    Article  CAS  Google Scholar 

  50. Ehrenberg, H.; Wiesmann, M.; Garcia-Jaca, J.; Weitzel, H.; Fuess, H. Magnetic structures of the high-pressure modifications of CoMoO4 and CuMoO4. J. Magn. Magn. Mater. 1998, 182, 152–160.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11975234, 11775225, 12075243, 12005227, 51790491, U2032150 and U1732148), the Users with Excellence Program of Hefei Science Center CAS (Nos. 2019HSC-UE002, 2020HSC-UE002, 2020HSC-CIP013 and 2021HSC-UE002), the Postdoctoral Science Foundation of China (Nos. 2020M682041, 2020TQ0316 and 2019M662202), the National Key Research and Development Program of China (No. 2019YFA0307900), and partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. The authors would like to thank SSRF, BSRF and NSRL for the synchrotron beamtime.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Wang, Zeming Qi or Wensheng Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Li, G., Tan, H. et al. Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer. Nano Res. 15, 881–888 (2022). https://doi.org/10.1007/s12274-021-3569-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3569-7

Keywords

Navigation