Skip to main content
Log in

Observation of Bragg polaritons in monolayer tungsten disulphide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Strong light-matter interactions involved with photons and quasiparticles are fundamentally interesting to access the wealthy many-body physics in quantum mechanics. The emerging two-dimensional (2D) semiconductors with large exciton binding energies and strong quantum confinement allow to investigate exciton-photon coupling at elevated temperatures. Here we report room-temperature formation of Bragg polaritons in monolayer semiconductor on a dielectric mirror through the exciton-Bragg photon coupling. With the negative detuning energy of ∼ 30 meV, angle-resolved reflection signals reveal anti-crossing behaviors of lower and upper polariton branches at ±18° together with the Rabi splitting of 10 meV. Meanwhile, the strengthened photoluminescence appears in the lower polariton branch right below the anti-crossing angles, indicating the presence of the characteristic bottleneck effect caused by the slowing exciton-polariton energy relaxation towards the band minimum. The extracted coupling strength is between the ones of weak and distinct strong coupling regimes, where the eigenenergy splitting induced by the moderate coupling is resolvable but not large enough to fully separate two polaritonic components. Our work develops a simplified strategy to generate exciton-polaritons in 2D semiconductors and can be further extended to probe the intriguing bosonic characteristics of these quasiparticles, such as Bose-Einstein condensation, polariton lasing and superfluidity, directly at the material surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basov, D. N.; Fogler, M. M.; De Abajo, F. J. G. Polaritons in van der waals materials. Science 2016, 354, aag1992.

    Article  Google Scholar 

  2. Hu, F. R.; Fei, Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 1901003.

    Article  CAS  Google Scholar 

  3. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

    Article  CAS  Google Scholar 

  4. Deng, H.; Haug, H.; Yamamoto, Y. Exciton-polariton bose-einstein condensation. Rev. Mod. Phys. 2010, 82, 1489–1537.

    Article  CAS  Google Scholar 

  5. Gibbs, H. M.; Khitrova, G.; Koch, S. W. Exciton-polariton light-semiconductor coupling effects. Nat. Photonics 2011, 5, 273.

    Article  Google Scholar 

  6. Sanvitto, D.; Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 2016, 15, 1061–1073.

    Article  CAS  Google Scholar 

  7. Byrnes, T.; Kim, N. Y.; Yamamoto, Y. Exciton-polariton condensates. Nat. Phys. 2014, 10, 803–813.

    Article  CAS  Google Scholar 

  8. Liu, X. Z.; Galfsky, T.; Sun, Z.; Xia, F. N.; Lin, E. C.; Lee, Y. H.; Kéna-Cohen, S.; Menon, V. M. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics. 2015, 9, 30–34.

    Article  CAS  Google Scholar 

  9. Flatten, L. C.; He, Z.; Coles, D. M.; Trichet, A. A. P.; Powell, A. W.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Room-temperature exciton-polaritons with two-dimensional WS2. Sci. Rep. 2016, 6, 33134.

    Article  CAS  Google Scholar 

  10. Lundt, N.; Klembt, S.; Cherotchenko, E.; Betzold, S.; Iff, O.; Nalitov, A. V.; Klaas, M.; Dietrich, C. P.; Kavokin, A. V.; Höfling, S. et al. Room-temperature tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 2016, 7, 13328.

    Article  CAS  Google Scholar 

  11. Sun, Z.; Gu, J.; Ghazaryan, A.; Shotan, Z.; Considine, C. R.; Dollar, M.; Chakraborty, B.; Liu, X. Z.; Ghaemi, P.; Kéna-Cohen, S. et al. Optical control of room-temperature valley polaritons. Nat. Photonics 2017, 11, 491–496.

    Article  CAS  Google Scholar 

  12. Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Withers, F.; Schwarz, S.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photonics 2017, 11, 497–501.

    Article  CAS  Google Scholar 

  13. Chen, Y. J.; Cain, J. D.; Stanev, T. K.; Dravid, V. P.; Stern, N. P. Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat. Photonics 2017, 11, 431–435.

    Article  CAS  Google Scholar 

  14. Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D. et al. Exciton-polaritons in van der waals heterostructures embedded in tunable microcavities. Nat. Commun. 2015, 6, 8579.

    Article  CAS  Google Scholar 

  15. Lundt, N.; Nagler, P.; Nalitov, A.; Klembt, S.; Wurdack, M.; Stoll, S.; Harder, T. H.; Betzold, S.; Baumann, V.; Kavokin, A. V. et al. Valley polarized relaxation and upconversion luminescence from tammplasmon trion-polaritons with a MoSe2 monolayer. 2D Mater. 2017, 4, 025096.

    Article  Google Scholar 

  16. Dhara, S.; Chakraborty, C.; Goodfellow, K. M.; Qiu, L.; O’Loughlin, T. A.; Wicks, G. W.; Bhattacharjee, S.; Vamivakas, A. N. Anomalous dispersion of microcavity trion-polaritons. Nat. Phys. 2018, 14, 130–133.

    Article  CAS  Google Scholar 

  17. Richard, M.; Romestain, R.; André, R.; Dang, L. S. Consequences of strong coupling between excitons and microcavity leaky modes. Appl. Phys. Lett. 2005, 86, 071916.

    Article  Google Scholar 

  18. Christopoulos, S.; Von Högersthal, G. B. H.; Grundy, A. J. D.; Lagoudakis, P. G.; Kavokin, A. V.; Baumberg, J. J.; Christmann, G.; Butté, R.; Feltin, E.; Carlin, J. F. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 2007, 98, 126405.

    Article  CAS  Google Scholar 

  19. Faure, S.; Brimont, C.; Guillet, T.; Bretagnon, T.; Gil, B.; Médard, F.; Lagarde, D.; Disseix, P.; Leymarie, J.; Zúñiga-Pérez, J. et al. Relaxation and emission of bragg-mode and cavity-mode polaritons in a zno microcavity at room temperature. Appl. Phys. Lett. 2009, 95, 121102.

    Article  Google Scholar 

  20. Goldberg, D.; Deych, L. I.; Lisyansky, A. A.; Shi, Z.; Menon, V. M.; Tokranov, V.; Yakimov, M.; Oktyabrsky, S. Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nat. Photonics 2009, 3, 662–666.

    Article  CAS  Google Scholar 

  21. Askitopoulos, A.; Mouchliadis, L.; Iorsh, I.; Christmann, G.; Baumberg, J. J.; Kaliteevski, M. A.; Hatzopoulos, Z.; Savvidis, P. G. Bragg polaritons: Strong coupling and amplification in an unfolded microcavity. Phys. Rev. Lett. 2011, 106, 076401.

    Article  CAS  Google Scholar 

  22. Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

    Article  Google Scholar 

  23. Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.

    Article  CAS  Google Scholar 

  24. Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schüller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi-R 2015, 9, 457–461.

    Article  CAS  Google Scholar 

  25. Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 1958, 112, 1555–1567.

    Article  CAS  Google Scholar 

  26. Zhang, L.; Gogna, R.; Burg, W.; Tutuc, E.; Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 2018, 9, 713.

    Article  Google Scholar 

  27. Tassone, F.; Piermarocchi, C.; Savona, V.; Quattropani, A.; Schwendimann, P. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 1997, 56, 7554–7563.

    Article  CAS  Google Scholar 

  28. Richard, M.; Kasprzak, J.; André, R.; Romestain, R.; Dang, L. S.; Malpuech, G.; Kavokin, A. Experimental evidence for nonequilibrium bose condensation of exciton polaritons. Phys. Rev. B 2005, 72, 201301(R).

    Article  Google Scholar 

  29. Plumhof, J. D.; Stöferle, T.; Mai, L. J.; Scherf, U.; Mahrt, R. F. Room-temperature bose-einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 2014, 13, 247–252.

    Article  CAS  Google Scholar 

  30. Flatten, L. C.; Coles, D. M.; He, Z. Y.; Lidzey, D. G.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 2017, 8, 14097.

    Article  CAS  Google Scholar 

  31. Sidler, M.; Back, P.; Cotlet, O.; Srivastava, A.; Fink, T.; Kroner, M.; Demler, E.; Imamoglu, A. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 2017, 13, 255–261.

    Article  CAS  Google Scholar 

  32. Barachati, F.; Fieramosca, A.; Hafezian, S.; Gu, J.; Chakraborty, B.; Ballarini, D.; Martinu, L.; Menon, V.; Sanvitto, D.; Kéna-Cohen, S. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 2018, 13, 906–909.

    Article  CAS  Google Scholar 

  33. Christmann, G.; Butté, R.; Feltin, E.; Mouti, A.; Stadelmann, P. A.; Castiglia, A.; Carlin, J. F.; Grandjean, N. Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime. Phys. Rev. B 2008, 77, 085310.

    Article  Google Scholar 

  34. Biancalana, F.; Mouchliadis, L.; Creatore, C.; Osborne, S.; Langbein, W. Microcavity polaritonlike dispersion doublet in resonant Bragg gratings. Phys. Rev. B 2009, 80, 121306(R).

    Article  Google Scholar 

  35. Lagois, J.; Fischer, B. Experimental observation of surface exciton polaritons. Phys. Rev. Lett. 1976, 36, 680–683.

    Article  CAS  Google Scholar 

  36. Hirabayashi, I.; Tokura, Y.; Koda, T. Surface exciton polariton in ZnO. J. Phys. Soc. Jpn. 1982, 51, 2934–2946.

    Article  CAS  Google Scholar 

  37. Lagois, J.; Fischer, B. Dispersion theory of surface-exciton polaritons. Phys. Rev. B 1978, 17, 3814–3824.

    Article  Google Scholar 

  38. Khitrova, G.; Gibbs, H. M.; Jahnke, F.; Kira, M.; Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 1999, 71, 1591–1639.

    Article  Google Scholar 

  39. Kalt, H.; Klingshirn, C. F. Oscillator model of strong light-matter coupling. In Semiconductor optics 1: Linear optical properties of semiconductors. Kalt, H.; Klingshirn, C. F., Eds.; Springer International Publishing: Cham, 2019; pp 81–100.

    Chapter  Google Scholar 

  40. Reithmaier, J. P.; Sęk, G.; Löffler, A.; Hofmann, C.; Kuhn, S.; Reitzenstein, S.; Keldysh, L. V.; Kulakovskii, V. D.; Reinecke, T. L.; Forchel, A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 2004, 432, 197–200.

    Article  CAS  Google Scholar 

  41. Andreani, L. C.; Panzarini, G.; Gérard, J. M. Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev. B 1999, 60, 13276–13279.

    Article  CAS  Google Scholar 

  42. Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the support of the Ministry of Education of Singapore (MOE 2019-T2-1-044), Singapore National Research Foundation under the Competitive Research Programs (No. NRF-CRP-21-2018-0007), the Fundamental Research Funds for the Central Universities of China, National Natural Science Foundation of China (Nos. 61904151 and 51173081), Natural Science Foundation of Shaanxi (No. 2020JM-108), Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLH-Z-020), Ministry of Education of China (IRT1148), and Zhejiang Provincial Natural Science Foundation of China (No. LGG19F040003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingzhi Shang, Wei Huang or Ting Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, L., Zhang, X. et al. Observation of Bragg polaritons in monolayer tungsten disulphide. Nano Res. 15, 1479–1485 (2022). https://doi.org/10.1007/s12274-021-3691-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3691-6

Keywords

Navigation