Skip to main content
Log in

Monolayer puckered pentagonal VTe2: An emergent two-dimensional ferromagnetic semiconductor with multiferroic coupling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) magnetic crystals have been extensively explored thanks to their potential applications in spintronics, valleytronics, and topological superconductivity. Here we report a novel monolayer magnet, namely puckered pentagonal VTe2 (PP-VTe2), intriguing atomic and electronic structures of which were firmly validated from first-principles calculations. The PP-VTe2 exhibits strong intrinsic ferromagnetism and semiconducting property distinct from the half-metallic bulk pyrite VTe2 (BP-VTe2) phase. An unusual magnetic anisotropy with large magnetic exchange energies is found. More interestingly, the multiferroic coupling between its 2D ferroelasticity and in-plane magnetization is further identified in PP-VTe2, lending it unprecedented controllability with external strains and electric fields. Serving as an emergent 2D ferromagnetic semiconductor with a novel crystal structure, monolayer PP-VTe2 provides an ideal platform for exploring exotic crystalline and spin configurations in low-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    Article  CAS  Google Scholar 

  2. Avsar, A.; Ochoa, H.; Guinea, F.; Özyilmaz, B.; van Wees, B. J.; Vera-Marun, I. J. Colloquium: Spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 2020, 92, 021003.

    Article  CAS  Google Scholar 

  3. Lin, X. Y.; Yang, W.; Wang, K. L.; Zhao, W. S. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283.

    Article  CAS  Google Scholar 

  4. Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

    Article  CAS  Google Scholar 

  5. Jimenez, V. O.; Kalappattil, V.; Eggers, T.; Bonilla, M.; Kolekar, S.; Huy, P. T.; Batzill, M.; Phan, M. H. A magnetic sensor using a 2D van der Waals ferromagnetic material. Sci. Rep. 2020, 10, 4789.

    Article  CAS  Google Scholar 

  6. Shen, J. X.; Shang, D. S.; Chai, Y. S.; Wang, S. G.; Shen, B. G.; Sun, Y. Mimicking synaptic plasticity and neural network using memtranstors. Adv. Mater. 2018, 30, 1706717.

    Article  Google Scholar 

  7. Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

    Article  CAS  Google Scholar 

  8. Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

    Article  CAS  Google Scholar 

  9. Mak, K. F.; Shan, J.; Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661.

    Article  Google Scholar 

  10. Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    Article  CAS  Google Scholar 

  11. Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    Article  CAS  Google Scholar 

  12. Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.

    Article  CAS  Google Scholar 

  13. Sun, X. D.; Li, W. Y.; Wang, X.; Sui, Q.; Zhang, T. Y.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S. Y. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363.

    Article  CAS  Google Scholar 

  14. Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with singlespin microscopy. Science 2019, 364, 973–976.

    Article  CAS  Google Scholar 

  15. Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

    Article  CAS  Google Scholar 

  16. Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

    Article  CAS  Google Scholar 

  17. Chen, W. J.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

    Article  CAS  Google Scholar 

  18. Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

    Article  CAS  Google Scholar 

  19. Liu, Z. L.; Wu, X.; Shao, Y.; Qi, J.; Cao, Y.; Huang, L.; Liu, C.; Wang, J. O.; Zheng, Q.; Zhu, Z. L. et al. Epitaxially grown monolayer VSe2: An air-stable magnetic two-dimensional material with low work function at edges. Sci. Bull. 2018, 63, 419–425.

    Article  Google Scholar 

  20. Yu, W.; Li, J.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

    Article  CAS  Google Scholar 

  21. Coelho, P. M.; Nguyen Cong, K.; Bonilla, M.; Kolekar, S.; Phan, M. H.; Avila, J.; Asensio, M. C.; Oleynik, I. I.; Batzill, M. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 2019, 123, 14089–14096.

    Article  CAS  Google Scholar 

  22. Zhang, W.; Zhang, L.; Wong, P. K. J.; Yuan, J. R.; Vinai, G.; Torelli, P.; van der Laan, G.; Feng, Y. P.; Wee, A. T. S. Magnetic transition in monolayer VSe2 via interface hybridization. ACS Nano 2019, 13, 8997–9004.

    Article  CAS  Google Scholar 

  23. Liu, H. T.; Xue, Y. Z.; Shi, J. A.; Guzman, R. A.; Zhang, P. P.; Zhou, Z.; He, Y. G.; Bian, C.; Wu, L. M.; Ma, R. S. et al. Observation of the kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett. 2019, 19, 8572–8580.

    Article  CAS  Google Scholar 

  24. Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

    Article  CAS  Google Scholar 

  25. Coelho, P. M.; Lasek, K.; Nguyen Cong, K.; Li, J. F.; Niu, W.; Liu, W. Q.; Oleynik, I. I.; Batzill, M. Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987–4993.

    Article  CAS  Google Scholar 

  26. Wang, Y.; Ren, J. H.; Li, J. H.; Wang, Y. J.; Peng, H. N.; Yu, P.; Duan, W. H.; Zhou, S. Y. Evidence of charge density wave with anisotropic gap in a monolayer VTe2 film. Phys. Rev. B 2019, 100, 241404(R).

    Article  Google Scholar 

  27. Miao, G. Y.; Xue, S. W.; Li, B.; Lin, Z. J.; Liu, B.; Zhu, X. T.; Wang, W. H.; Guo, J. D. Real-space investigation of the charge density wave in VTe2 monolayer with broken rotational and mirror symmetries. Phys. Rev. B 2020, 101, 035407.

    Article  CAS  Google Scholar 

  28. Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097.

    Article  CAS  Google Scholar 

  29. Li, E.; Wang, D. F.; Fan, P.; Zhang, R. Z.; Zhang, Y. Y.; Li, G.; Mao, J. H.; Wang, Y. L.; Lin, X.; Du, S. X. et al. Construction of bilayer PdSe2 on epitaxial graphene. Nano Res. 2018, 11, 5858–5865.

    Article  CAS  Google Scholar 

  30. Lu, L. S.; Chen, G. H.; Cheng, H. Y.; Chuu, C. P.; Lu, K. C.; Chen, C. H.; Lu, M. Y.; Chuang, T. H.; Wei, D. H.; Chueh, W. C. et al. Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 2020, 14, 4963–4972.

    Article  CAS  Google Scholar 

  31. Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford University Press: Oxford, UK, 1954.

    Google Scholar 

  32. Lin, J. H.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Novel Pd2Se3 Two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017, 119, 016101.

    Article  Google Scholar 

  33. Puretzky, A. A.; Oyedele, A. D.; Xiao, K.; Haglund, A. V.; Sumpter, B. G.; Mandrus, D.; Geohegan, D. B.; Liang, L. B. Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater. 2018, 5, 035016.

    Article  Google Scholar 

  34. Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.

    Article  CAS  Google Scholar 

  35. Li, X. X.; Yang, J. L. CrXTe3 (X = Si, Ge) Nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J. Mater. Chem. C 2014, 2, 7071–7076.

    Article  CAS  Google Scholar 

  36. Lutfalla, S.; Shapovalov, V.; Bell, A. T. Calibration of the DFT/GGA+U Method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 2011, 7, 2218–2223.

    Article  CAS  Google Scholar 

  37. Li, X. Y.; Meng, S.; Sun, J. T. Emergence of d-orbital magnetic dirac fermions in a MoS2 monolayer with squared pentagon structure. Phys. Rev. B 2020, 101, 144409.

    Article  CAS  Google Scholar 

  38. Zhu, Y.; Kong, X. H.; Rhone, T. D.; Guo, H. Systematic search for two-dimensional ferromagnetic materials. Phys. Rev. Mater. 2018, 2, 081001(R).

    Article  Google Scholar 

  39. Lu, X. B.; Fei, R. X.; Yang, L. Curie temperature of emerging two-dimensional magnetic structures. Phys. Rev. B 2019, 100, 205409.

    Article  CAS  Google Scholar 

  40. Wang, C.; Zhou, X. Y.; Zhou, L. W.; Tong, N. H.; Lu, Z. Y.; Ji, W. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64, 293–300.

    Article  CAS  Google Scholar 

  41. Sun, Y. J.; Zhuo, Z. W.; Wu, X. J. Bipolar magnetism in a two-dimensional NbS2 semiconductor with high curie temperature. J. Mater. Chem. C 2018, 6, 11401–11406.

    Article  CAS  Google Scholar 

  42. Jiang, Z.; Wang, P.; Xing, J. P.; Jiang, X.; Zhao, J. J. Screening and design of novel 2D ferromagnetic materials with high curie temperature above room temperature. ACS Appl. Mater. Interfaces 2018, 10, 39032–39039.

    Article  CAS  Google Scholar 

  43. Guo, Y. L.; Wang, B.; Zhang, X. W.; Yuan, S. J.; Ma, L.; Wang, J. L. Magnetic two-dimensional layered crystals meet with ferromagnetic semiconductors. InfoMat 2020, 2, 639–655.

    Article  CAS  Google Scholar 

  44. Li, X. X.; Yang, J. L. Toward room-temperature magnetic semiconductors in two-dimensional ferrimagnetic organometallic lattices. J. Phys. Chem. Lett. 2019, 10, 2439–2444.

    Article  CAS  Google Scholar 

  45. Henkelman, G.; Uberuaga, B. P.; Jönsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  46. Wu, M. H.; Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016, 16, 3236–3241.

    Article  CAS  Google Scholar 

  47. Zhang, G. H.; Qin, H. J.; Chen, J.; He, X. Y.; Lu, L.; Li, Y. Q.; Wu, K. H. Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential. Adv. Funct. Mater. 2011, 21, 2351–2355.

    Article  CAS  Google Scholar 

  48. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  50. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  51. Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 2002, 65, 104104.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2020YFA0308800, 2016YFA0202300, and 2016YFA0300902), the National Natural Science Foundation of China (Nos. 91850120 and 11974045), and the Strategic Priority Research Program (B) of CAS (No. XDB30000000). The computing resources were provided by the Institute of Physics, Chinese Academy of Sciences and Songshan Lake Supercomputing Facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Meng or Jiatao Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhu, Z., Yang, Q. et al. Monolayer puckered pentagonal VTe2: An emergent two-dimensional ferromagnetic semiconductor with multiferroic coupling. Nano Res. 15, 1486–1491 (2022). https://doi.org/10.1007/s12274-021-3692-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3692-5

Keywords

Navigation