Skip to main content
Log in

Counterbalancing of electron and hole transfer in quantum dots for enhanced photocatalytic H2 evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In-depth understandings of charge carrier transfer dynamics in any artificial catalytic system are of critical importance for the future design of highly efficient photocatalysts. Herein, we synthesized sub-monolayer ZnSe partial-shell coated CdSe/CdS core/shell quantum dots in a controlled fashion. The ZnSe decorated quantum dots were employed as a model catalyst for photogeneration of H2 under light illumination. Both theoretical calculations and experimental results unravel that the growth of ZnSe partial-shell would retard the photogenerated electron transfer, and meanwhile, accelerate the corresponding hole migration process during the H2 photogeneration reaction in the artificial photocatalytic system. As such, the performance of the relevant photocatalytic system can be modulated and optimized, and accordingly, a plausible underlying mechanism is rationalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  CAS  Google Scholar 

  2. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  CAS  Google Scholar 

  3. Fan, X. B.; Yu, S.; Hou, B.; Kim, J. M. Quantum dots based photocatalytic hydrogen evolution. Isr. J. Chem. 2019, 59, 762–773.

    Article  CAS  Google Scholar 

  4. Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

    Article  CAS  Google Scholar 

  5. Kandi, D.; Martha, S.; Parida, K. M. Quantum dots as enhancer in photocatalytic hydrogen evolution: A review. Int. J. Hydrogen Energy 2017, 42, 9467–9481.

    Article  CAS  Google Scholar 

  6. Wang, Y.; Ma, Y.; Li, X. B.; Gao, L.; Gao, X. Y.; Wei, X. Z.; Zhang, L. P.; Tung, C. H.; Qiao, L. J.; Wu, L. Z. Unveiling catalytic sites in a typical hydrogen photogeneration system consisting of semiconductor quantum dots and 3d-metal ions. J. Am. Chem. Soc. 2020, 142, 4680–4689.

    Article  CAS  Google Scholar 

  7. Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

    Article  CAS  Google Scholar 

  8. Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

    Article  CAS  Google Scholar 

  9. Ben-Shahar, Y.; Scotognella, F.; Kriegel, I.; Moretti, L.; Cerullo, G.; Rabani, E.; Banin, U. Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nat. Commun. 2016, 7, 10413.

    Article  CAS  Google Scholar 

  10. Liu, M.; Qiao, L. Z.; Dong, B. B.; Guo, S.; Yao, S.; Li, C.; Zhang, Z. M.; Lu, T. B. Photocatalytic coproduction of H2 and industrial chemical over MOF-derived direct Z-scheme heterostructure. Appl. Catal. B: Environ. 2020, 273, 119066.

    Article  CAS  Google Scholar 

  11. Zhong, L. X.; Mao, B. D.; Liu, M.; Liu, M. Y.; Sun, Y. Q.; Song, Y. T.; Zhang, Z. M.; Lu, T. B. Construction of hierarchical photocatalysts by growing ZnIn2S4 nanosheets on Prussian blue analogue-derived bimetallic sulfides for solar co-production of H2 and organic chemicals. J. Energy Chem. 2021, 54, 386–394.

    Article  CAS  Google Scholar 

  12. Guo, S.; Kong, L. H.; Wang, P.; Yao, S.; Lu, T. B.; Zhang, Z. M. Switching excited state distribution of metal-organic framework for dramatically boosting photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202206193.

    CAS  Google Scholar 

  13. Lan, Q.; Jin, S. J.; Yang, B. H.; Zhao, Q.; Si, C. L.; Xie, H. Q.; Zhang, Z. M. Metal-oxo cluster catalysts for photocatalytic water splitting and carbon dioxide reduction. Trans. Tianjin Univ. 2022, 28, 214–225.

    Article  CAS  Google Scholar 

  14. Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173.

    Article  CAS  Google Scholar 

  15. Caputo, C. A.; Gross, M. A.; Lau, V. W.; Cavazza, C.; Lotsch, B. V.; Reisner, E. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst. Angew. Chem., Int. Ed. 2014, 53, 11538–11542.

    Article  CAS  Google Scholar 

  16. Wang, P.; Yang, Q. Q.; Xu, C.; Wang, B.; Wang, H.; Zhang, J. D.; Jin, Y. D. Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution. Nano Res. 2022, 15, 3106–3113.

    Article  CAS  Google Scholar 

  17. Li, Z. J.; Wang, J. J.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Feng, K.; Chen, B.; Tung, C. H.; Wu, L. Z. An exceptional artificial photocatalyst, Nih-CdSe/CdS core/shell hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution. Adv. Mater. 2013, 25, 6613–6618.

    Article  CAS  Google Scholar 

  18. Shemesh, Y.; Macdonald, J. E.; Menagen, G.; Banin, U. Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 1185–1189.

    Article  CAS  Google Scholar 

  19. Wang, F.; Liang, W. J.; Jian, J. X.; Li, C. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water. Angew. Chem., Int. Ed. 2013, 52, 8134–8138.

    Article  CAS  Google Scholar 

  20. Wang, F.; Wang, W. G.; Wang, X. J.; Wang, H. Y.; Tung, C. H.; Wu, L. Z. A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. Angew. Chem., Int. Ed. 2011, 50, 3193–3197.

    Article  CAS  Google Scholar 

  21. Li, Z. J.; Li, X. B.; Wang, J. J.; Yu, S.; Li, C. B.; Tung, C. H.; Wu, L. Z. A robust “artificial catalyst” in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy Environ. Sci. 2013, 6, 465–469.

    Article  CAS  Google Scholar 

  22. Brown, K. A.; Wilker, M. B.; Boehm, M.; Dukovic, G.; King, P. W. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 2012, 134, 5627–5636.

    Article  CAS  Google Scholar 

  23. Huang, J. E.; Mulfort, K. L.; Du, P. W.; Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc. 2012, 134, 16472–16475.

    Article  CAS  Google Scholar 

  24. Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L. Colloidal hybrid heterostructures based on II–VI semiconductor nanocrystals for photocatalytic hydrogen generation. J. Photochem. Photobiol. C:Photochem. Rev. 2014, 19, 52–61.

    Article  CAS  Google Scholar 

  25. Wilker, M. B.; Schnitzenbaumer, K. J.; Dukovic, G. Recent progress in photocatalysis mediated by colloidal II–VI nanocrystals. Isr. J. Chem. 2012, 52, 1002–1015.

    Article  CAS  Google Scholar 

  26. Yuan, Y. C.; Jin, N.; Saghy, P.; Dube, L.; Zhu, H.; Chen, O. Quantum dot photocatalysts for organic transformations. J. Phys. Chem. Lett. 2021, 12, 7180–7193.

    Article  CAS  Google Scholar 

  27. Li, Q. Y.; Zhao, F. J.; Qu, C.; Shang, Q. Y.; Xu, Z. H.; Yu, L.; McBride, J. R.; Lian, T. Q. Two-dimensional morphology enhances light-driven H2 generation efficiency in CdS nanoplatelet-Pt heterostructures. J. Am. Chem. Soc. 2018, 140, 11726–11734.

    Article  CAS  Google Scholar 

  28. Han, G. Q.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587.

    Article  CAS  Google Scholar 

  29. Ben-Shahar, Y.; Scotognella, F.; Waiskopf, N.; Kriegel, I.; Dal Conte, S.; Cerullo, G.; Banin, U. Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods. Small 2015, 11, 462–471.

    Article  CAS  Google Scholar 

  30. Wang, P.; Zhang, J.; He, H. L.; Xu, X. L.; Jin, Y. D. Efficient visible light-driven H2 production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel-sulfur complex. Nanoscale 2014, 6, 13470–13475.

    Article  CAS  Google Scholar 

  31. Amirav, L.; Alivisatos, A. P. Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051–1054.

    Article  CAS  Google Scholar 

  32. Khon, E.; Lambright, K.; Khnayzer, R. S.; Moroz, P.; Perera, D.; Butaeva, E.; Lambright, S.; Castellano, F. N.; Zamkov, M. Improving the catalytic activity of semiconductor nanocrystals through selective domain etching. Nano Lett. 2013, 13, 2016–2023.

    Article  CAS  Google Scholar 

  33. Acharya, K. P.; Khnayzer, R. S.; O’Connor, T.; Diederich, G.; Kirsanova, M.; Klinkova, A.; Roth, D.; Kinder, E.; Imboden, M.; Zamkov, M. The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals. Nano Lett. 2011, 11, 2919–2926.

    Article  CAS  Google Scholar 

  34. Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.

    Article  CAS  Google Scholar 

  35. Soni, U.; Pal, A.; Singh, S.; Mittal, M.; Yadav, S.; Elangovan, R.; Sapra, S. Simultaneous type-I/type-II emission from CdSe/CdS/ZnSe nano-heterostructures. ACS Nano 2014, 8, 113–123.

    Article  CAS  Google Scholar 

  36. Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

    Article  CAS  Google Scholar 

  37. Tan, R.; Yuan, Y. C.; Nagaoka, Y.; Eggert, D.; Wang, X. D.; Thota, S.; Guo, P.; Yang, H. R.; Zhao, J.; Chen, O. Monodisperse hexagonal pyramidal and bipyramidal wurtzite CdSe-CdS core—shell nanocrystals. Chem. Mater. 2017, 29, 4097–4108.

    Article  CAS  Google Scholar 

  38. Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core—shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

    Article  CAS  Google Scholar 

  39. Wang, L.; Nonaka, K.; Okuhata, T.; Katayama, T.; Tamai, N. Quasi-type II carrier distribution in CdSe/CdS core/shell quantum dots with type I band alignment. J. Phys. Chem. C 2018, 122, 12038–12046.

    Article  CAS  Google Scholar 

  40. Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.

    Article  CAS  Google Scholar 

  41. Ca, N. X.; Hien, N. T.; Tan, P. M.; Phan, T. L.; Thanh, L. D.; Do, P. V.; Bau, N. Q.; Lien, V. T. K.; Van, H. T. Tunable dual emission in type-I/type-II CdSe/CdS/ZnSe nanocrystals. J. Alloys Compd. 2019, 791, 144–151.

    Article  CAS  Google Scholar 

  42. Qiao, F.; Kang, R.; Liang, Q. C.; Cai, Y. Q.; Bian, J. M.; Hou, X. Y. Tunability in the optical and electronic properties of ZnSe microspheres via Ag and Mn doping. ACS Omega 2019, 4, 12271–12277.

    Article  CAS  Google Scholar 

  43. Yang, L.; Zhu, J. G.; Xiao, D. Q. Microemulsion-mediated hydrothermal synthesis of ZnSe and Fe-doped ZnSe quantum dots with different luminescence characteristics. RSC Adv. 2012, 2, 8179–8188.

    Article  CAS  Google Scholar 

  44. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

    Article  CAS  Google Scholar 

  45. Chen, D. A.; Zhao, F.; Qi, H.; Rutherford, M.; Peng, X. G. Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor. Chem. Mater. 2010, 22, 1437–1444.

    Article  CAS  Google Scholar 

  46. Ai, Z. Z.; Zhang, K.; Shi, D.; Chang, B.; Shao, Y. L.; Zhang, L.; Wu, Y. Z.; Hao, X. P. Band-matching transformation between CdS and BCNNTs with tunable p-n homojunction for enhanced photocatalytic pure water splitting. Nano Energy 2020, 69, 104408.

    Article  CAS  Google Scholar 

  47. Wróbel, J.; Kurzydłowski, K. J.; Hummer, K.; Kresse, G.; Piechota, J. Calculations of ZnO properties using the Heyd—Scuseria—Ernzerhof screened hybrid density functional. Phys. Rev. B 2009, 80, 155124.

    Article  Google Scholar 

  48. Luppi, M.; Ossicini, S. Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO2:Beyond the quantum confinement effect. Phys. Rev. B 2005, 71, 035340.

    Article  Google Scholar 

  49. Liu, J. J. Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: A hybrid DFT study. J. Phys. Chem. C 2015, 119, 28417–28423.

    Article  CAS  Google Scholar 

  50. Zhu, H. M.; Song, N. H.; Lv, H. J.; Hill, C. L.; Lian, T. Q. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 11701–11708.

    Article  CAS  Google Scholar 

  51. Gimbert-Suriñach, C.; Albero, J.; Stoll, T.; Fortage, J.; Collomb, M. N.; Deronzier, A.; Palomares, E.; Llobet, A. Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots. J. Am. Chem. Soc. 2014, 136, 7655–7661.

    Article  Google Scholar 

  52. Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 2007, 129, 11708–11719.

    Article  CAS  Google Scholar 

  53. He, Y.; Zhang, M.; Shi, J. J.; Cen, Y. L.; Wu, M. Improvement of visible-light photocatalytic efficiency in a novel InSe/Zr2CO2 heterostructure for overall water splitting. J. Phys. Chem. C 2019, 123, 12781–12790.

    Article  CAS  Google Scholar 

  54. Bao, Y. P.; Wang, J.; Wang, Q.; Cui, X. F.; Long, R.; Li, Z. Q. Immobilization of catalytic sites on quantum dots by ligand bridging for photocatalytic CO2 reduction. Nanoscale 2020, 12, 2507–2514.

    Article  CAS  Google Scholar 

  55. Bian, Z. F.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat. Commun. 2014, 5, 3038.

    Article  Google Scholar 

  56. Huang, M. Y.; Li, X. B.; Gao, Y. J.; Li, J.; Wu, H. L.; Zhang, L. P.; Tung, C. H.; Wu, L. Z. Surface stoichiometry manipulation enhances solar hydrogen evolution of CdSe quantum dots. J. Mater. Chem. A 2018, 6, 6015–6021.

    Article  CAS  Google Scholar 

  57. Qiu, F.; Han, Z. J.; Peterson, J. J.; Odoi, M. Y.; Sowers, K. L.; Krauss, T. D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 2016, 16, 5347–5352.

    Article  CAS  Google Scholar 

  58. Wang, P.; Wang, M. M.; Zhang, J.; Li, C. P.; Xu, X. L.; Jin, Y. D. Shell thickness engineering significantly boosts the photocatalytic H2 evolution efficiency of CdS/CdSe core/shell quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 35712–35720.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. P. W. acknowledges the financial support from the China Scholarship Council (CSC) and the startup funding of Jilin Normal University (No. 2021036). Prof. X. T. Y. acknowledges the funding of Changbai Mountain industrial project R&D leading team, Jilin Provincial Department of Science and Technology, China. Prof. O. C. acknowledges the support from the Electron Microscopy Facility and NanoTools Facility at Brown University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wang, Xiaotian Yang, Xinzhong Wang or Ou Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Shi, W., Jin, N. et al. Counterbalancing of electron and hole transfer in quantum dots for enhanced photocatalytic H2 evolution. Nano Res. 16, 2271–2277 (2023). https://doi.org/10.1007/s12274-022-5055-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5055-2

Keywords

Navigation