Skip to main content
Log in

Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Recently, lytic bacteriophages (phages) have been focused on treating bacterial infectious diseases. We investigated the protective efficacy of a novel Pseudomonas aeruginosa phage, PA1Ø, in normal and neutropenic mice. A lethal dose of P. aeruginosa PAO1 was administered via the intraperitoneal route and a single dose of PA1Ø with different multiplicities of infection (MOI) was treated into infected mice. Immunocompetent mice infected with P. aeruginosa PAO1 were successfully protected by PA1Ø of 1 MOI, 10 MOI or 100 MOI with 80% to 100% survival rate. No viable bacteria were found in organ samples after 48 h of the phage treatment. Phage clearing patterns were different in the presence or absence of host bacteria but PA1Ø disappeared from all organs after 72 h except spleen in the presence of host bacteria. On the contrary, PA1Ø treatment could not protect neutropenic mice infected with P. aeruginosa PAO1 even though could extend their lives for a short time. In in vitro phage-neutrophil bactericidal test, a stronger bactericidal effect was observed in phage-neutrophil co-treatment than in phage single treatment without neutrophils, suggesting phage-neutrophil co-work is essential for the efficient killing of bacteria in the mouse model. In conclusion, PA1Ø can be possibly utilized in future phage therapy endeavors since it exhibited strong protective effects against virulent P. aeruginosa infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S.I. 2002. Treatment of post-burns bacterial infections by bacteriophages, specifically ubiquitous Pseudomonas spp. notoriously resistant to antibiotics. Med. Hypotheses 58, 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Akinyemi, K.O., W. Philipp, W. Beyer, and R. Bohm. 2010. Application of phage typing and pulsed-field gel electrophoresis to analyse Salmonella enterica isolates from a suspected outbreak in Lagos, Nigeria. J. Infect. Dev. Ctries. 4, 828–833.

    PubMed  Google Scholar 

  • Biswas, B. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70, 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Borysowski, J. and A. Gorski. 2008. Is phage therapy acceptable in the immunocompromised host? Int. J. Infect. Dis. 12, 466–471.

    Article  PubMed  Google Scholar 

  • Bullwinkle, T.J. and G.B. Koudelka. 2011. The lysis-lysogeny decision of bacteriophage 933W: a 933W repressor-mediated long-distance loop has no role in regulating 933W PRM activity. J. Bacteriol. 193, 3313–3323.

    Article  PubMed  CAS  Google Scholar 

  • Capparelli, R., N. Nocerino, M. Iannaccone, D. Ercolini, M. Parlato, M. Chiara, and D. Iannelli. 2010. Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J. Infect. Dis. 201, 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Capparelli, R., M. Parlato, G. Borriello, P. Salvatore, and D. Iannelli. 2007. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemother. 51, 2765–2773.

    Article  PubMed  CAS  Google Scholar 

  • Carlton, R.M. 1999. Phage therapy: past history and future prospects. Arch. Immunol. Ther. Exp. (Warsz). 47, 267–274.

    CAS  Google Scholar 

  • Comeau, A.M., F. Tetart, S.N. Trojet, M.F. Prere, and H.M. Krisch. 2007. Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One. 2, e799.

    Article  PubMed  Google Scholar 

  • Ferrante, A. and Y.H. Thong. 1978. A rapid one-step procedure for purification of mononuclear and polymorphonuclear leukocytes from human blood using a modification of the Hypaque-Ficoll technique. J. Immunol. Methods 24, 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Fu, W., T. Forster, O. Mayer, J.J. Curtin, S.M. Lehman, and R.M. Donlan. 2010. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 54, 397–404.

    Article  PubMed  CAS  Google Scholar 

  • Goode, D., V.M. Allen, and P.A. Barrow. 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 69, 5032–5036.

    Article  PubMed  CAS  Google Scholar 

  • Heo, Y.J., Y.R. Lee, H.H. Jung, J. Lee, G. Ko, and Y.H. Cho. 2009. Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob. Agents Chemother. 53, 2469–2474.

    Article  PubMed  CAS  Google Scholar 

  • Housby, J.N. and N.H. Mann. 2009. Phage therapy. Drug Discov. Today 14, 536–540.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, W.T., D. Armstrong, G.P. Bodey, E.J. Bow, A.E. Brown, T. Calandra, R. Feld, P.A. Pizzo, K.V. Rolston, J.L. Shenep, and L.S. Young. 2002. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin. Infect. Dis. 34, 730–751.

    Article  PubMed  Google Scholar 

  • Kalmar, J.R., R.R. Arnold, M.L. Warbington, and M.K. Gardner. 1988. Superior leukocyte separation with a discontinuous one-step Ficoll-Hypaque gradient for the isolation of human neutrophils. J. Immunol. Methods 110, 275–281.

    Article  PubMed  CAS  Google Scholar 

  • Kocharunchitt, C., T. Ross, and D.L. McNeil. 2009. Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. Int. J. Food Microbiol. 128, 453–459.

    Article  PubMed  CAS  Google Scholar 

  • Kumari, S., K. Harjai, and S. Chhibber. 2009. Bacteriophage treatment of burn wound infection caused by Pseudomonas aeruginosa PAO in BALB/c Mice. Am. J. Biomed. Sci. 385–394.

  • Kutateladze, M. and R. Adamia. 2008. Phage therapy experience at the Eliava Institute. Med. Mal. Infect. 38, 426–430.

    Article  PubMed  CAS  Google Scholar 

  • Levin, B.R. and J.J. Bull. 2004. Population and evolutionary dynamics of phage therapy. Nat. Rev. Microbiol. 2, 166–173.

    Article  PubMed  CAS  Google Scholar 

  • McVay, C.S., M. Velasquez, and J.A. Fralick. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chemother. 51, 1934–1938.

    Article  PubMed  CAS  Google Scholar 

  • Merabishvili, M., J.P. Pirnay, G. Verbeken, N. Chanishvili, M. Tediashvili, N. Lashkhi, T. Glonti, V. Krylov, J. Mast, L. van Parys, and et al. 2009. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 4, e4944.

    Article  PubMed  Google Scholar 

  • O’Flynn, G., R.P. Ross, G.F. Fitzgerald, and A. Coffey. 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol. 70, 3417–3424.

    Article  PubMed  Google Scholar 

  • Preisner, O., R. Guiomar, J. Machado, J.C. Menezes, and J.A. Lopes. 2010. Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica serovar Enteritidis phage types. Appl. Environ. Microbiol. 76, 3538–3544.

    Article  PubMed  CAS  Google Scholar 

  • Repine, J.E., C.C. Clawson, and F.C. Goetz. 1980. Bactericidal function of neutrophils from patients with acute bacterial infections and from diabetics. J. Infect. Dis. 142, 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, A., C.R. Moffatt, A. Dyda, R.L. Hundy, A.L. Kaye, R. Krsteski, S. Rockliff, R. Kampen, P.M. Kelly, and E.D. O’Brien. 2010. An outbreak of gastroenteritis due to Salmonella Typhimurium phage type 170 associated with consumption of a dessert containing raw egg. Commun. Dis. Intell. 34, 329–333.

    PubMed  Google Scholar 

  • Satapathy, A.K. and C.C. Richardson. 2011. The glutamate switch of bacteriophage T7 DNA helicase: role in coupling NTP and DNA binding to NTP hydrolysis. J. Biol. Chem. 286, 23113–23120.

    Article  PubMed  CAS  Google Scholar 

  • Sillankorva, S., E. Pleteneva, O. Shaburova, S. Santos, C. Carvalho, J. Azeredo, and V. Krylov. 2010. Salmonella Enteritidis bacteriophage candidates for phage therapy of poultry. J. Appl. Microbiol. 108, 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama, J., Y. Maeda, I. Takemura, R. Chess-Williams, H. Wakiguchi, and S. Matsuzaki. 2009. Blood kinetics of four intraperitoneally administered therapeutic candidate bacteriophages in healthy and neutropenic mice. Microbiol. Immunol. 53, 301–304.

    Article  PubMed  CAS  Google Scholar 

  • Usher, L.R., R.A. Lawson, I. Geary, C.J. Taylor, C.D. Bingle, G.W. Taylor, and M.K. Whyte. 2002. Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J. Immunol. 168, 1861–1868.

    PubMed  CAS  Google Scholar 

  • Wang, J., B. Hu, M. Xu, Q. Yan, S. Liu, X. Zhu, Z. Sun, E. Reed, L. Ding, J. Gong, Q.Q. Li, and J. Hu. 2006. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 17, 309–317.

    PubMed  Google Scholar 

  • Waseh, S., P. Hanifi-Moghaddam, R. Coleman, M. Masotti, S. Ryan, M. Foss, R. MacKenzie, M. Henry, C.M. Szymanski, and J. Tanha. 2010. Orally administered P22 phage tailspike protein reduces Salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PLoS One. 5, e13904.

    Article  PubMed  Google Scholar 

  • Watanabe, R., T. Matsumoto, G. Sano, Y. Ishii, K. Tateda, Y. Sumiyama, J. Uchiyama, S. Sakurai, S. Matsuzaki, S. Imai, and K. Yamaguchi. 2007. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob. Agents Chemother. 51, 446–452.

    Article  PubMed  CAS  Google Scholar 

  • Weber-Dabrowska, B., M. Zimecki, M. Mulczyk, and A. Gorski. 2002. Effect of phage therapy on the turnover and function of peripheral neutrophils. FEMS Immunol. Med. Microbiol. 34, 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Whelan, J., H. Noel, I. Friesema, A. Hofhuis, C.M. de Jager, M. Heck, A. Heuvelink, and W. van Pelt. 2010. National outbreak of Salmonella Typhimurium (Dutch) phage-type 132 in the Netherlands, October to December 2009. Euro. Surveill. 15.

  • Zilberberg M.D., J. Chen, S.H. Mody, A.M. Ramsey, and A.F. Shorr. 2010. Imipenem resistance of Pseudomonas in pneumonia: a systematic literature review. BMC Pulm. Med. 10, 45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungmin Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, B.R., Kim, S., Rahman, M. et al. Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. J Microbiol. 49, 994–999 (2011). https://doi.org/10.1007/s12275-011-1512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-1512-4

Keywords

Navigation