Skip to main content
Log in

Alcohol dehydrogenase 1 and NAD(H)-linked methylglyoxal oxidoreductase reciprocally regulate glutathione-dependent enzyme activities in Candida albicans

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Glutathione reductase (Glr1) activity controls cellular glutathione and reactive oxygen species (ROS). We previously demonstrated two predominant methylglyoxal scavengers-NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase 1 (Adh1)-in glutathione-depleted γ-glutamyl cysteinyl synthetase-disrupted Candida albicans. However, experimental evidence for Candida pathophysiology lacking the enzyme activities of Mgd1 and Adh1 on glutathione-dependent redox regulation remains unclear. Herein, we have aimed to demonstrate that glutathione-dependent enzyme activities coupled with cellular ROS changes is regulated by methylglyoxal accumulation in Δmgd1/Δadh1 double disruptants. Δmgd1/Δadh1 showed severe growth defects and G1-phase cell cycle arrest. The observed complementary and reciprocal methylglyoxal-oxidizing and methylglyoxalreducing activities between Δmgd1 and Δadh1 were not always exhibited in Δmgd1/Δadh1. Although intracellular accumulation of methylglyoxal and pyruvate was shown in all disruptants, to a greater or lesser degree, methylglyoxal was particularly accumulated in the Δmgd1/Δadh1 double disruptant. While cellular ROS significantly increased in Δmgd1 and Δadh1 as compared to the wild-type, Δmgd1/Δadh1 underwent a decrease in ROS in contrast to Δadh1. Despite the experimental findings underlining the importance of the undergoing unbalanced redox state of Δmgd1/Δadh1, glutathione-independent antioxidative enzyme activities did not change during proliferation and filamentation. Contrary to the significantly lowered glutathione content and Glr1 enzyme activity, the activity staining-based glutathione peroxidase activities concomitantly increased in this mutant. Additionally, the enhanced GLR1 transcript supported our results in Δmgd1/Δadh1, indicating that deficiencies of both Adh1 and Mgd1 activities stimulate specific glutathione-dependent enzyme activities. This suggests that glutathione-dependent redox regulation is evidently linked to C. albicans pathogenicity under the control of methylglyoxal-scavenging activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre, J., Ríos-Momberg, M., Hewitt, D., and Hansberg, W. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13, 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Baek, Y.U., Kim, Y.R., Yim, H.S., and Kang, S.O. 2004. Disruption of γ-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans. FEBS Lett. 556, 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Bender, K., Seibert, R.T., Weinker, T.F., Kren, V., Pravenec, M., and Bissbort, S. 1994. Biochemical genetics of methylglyoxal dehydrogenases in the laboratory rat (Rattus norvegicus). Biochem. Genet. 32, 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Benov, L., Sztejnberg, L., and Fridovich, I. 1998. Critical evaluation of the use of hydroethidine as a measure of superoxide anionradical. Free Radic. Biol. Med. 25, 826–831.

    Article  CAS  PubMed  Google Scholar 

  • Biswas, S., Ray, M., Misra, S., Dutta, D.P., and Ray, S. 1997. Selective inhibition of mitochondrial respiration and glycolysis in human leukaemic leucocytes by methylglyoxal. Biochem. J. 323, 343–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, A.J., Budge, S., Kaloriti, D., Tillmann, A., Jacobsen, M.D., Yin, Z., Ene, I.V., Bohovych, I., Sandai, D., Kastora, S., et al. 2014. Stress adaptation in a pathogenic fungus. J. Exp. Biol. 217, 144–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlberg, I. and Mannervik, B. 1985. Glutathione reductase. Methods Enzymol. 113, 484–490.

    Article  CAS  PubMed  Google Scholar 

  • Choi, C.H., Park, S.J., Jeong, S.Y., Yim, H.S., and Kang, S.O. 2008. Methylglyoxal accumulation by glutathione depletion leads to cell cycle arrest in Dictyostelium. Mol. Microbiol. 70, 1293–1304.

    Article  CAS  PubMed  Google Scholar 

  • de Arriba, S.G., Stuchbury, G., Yarin, J., Burnell, J., Loske, C., and Münch, G. 2007. Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells-protection by carbonyl scavengers. Neurobiol. Aging 28, 1044–1050.

    Article  PubMed  CAS  Google Scholar 

  • de Mendez, I., Young, K.R.J., Bignon, J., and Lambré, C.R. 1991. Biochemical characteristics of alveolar macrophage-specific peroxidase activities in the rat. Arch. Biochem. Biophys. 289, 319–323.

    Article  CAS  PubMed  Google Scholar 

  • Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.

    Article  PubMed  Google Scholar 

  • Du, J., Suzuki, H., Nagase, F., Akhand, A.A., Ma, X.Y., Yokoyama, T., Miyata, T., and Nakashima, I. 2001. Superoxide-mediated early oxidation and activation of ASK1 are important for initiating methylglyoxal-induced apoptosis process. Free Radic. Biol. Med. 31, 469–478.

    Article  CAS  PubMed  Google Scholar 

  • Dudani, A.K., Srivastava, L.K., and Prasad, R. 1984. Glyoxalase-I activity and cell cycle regulation in yeast. Biochem. Biophys. Res. Commun. 119, 962–967.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Q., Summers, E., Guo, B., and Fink, G. 1999. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181, 6339–6346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonzi, W.A. and Irwin, M.Y. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., et al. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446.

    Article  CAS  PubMed  Google Scholar 

  • Garay-Arroyo, A. and Covarrubias, A.A. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15, 879–892.

    Article  CAS  PubMed  Google Scholar 

  • Gimeno, C.J., Ljungdahl, P.O., Styles, C.A., and Fink, G.R. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077–1090.

    Article  CAS  PubMed  Google Scholar 

  • González-Párraga, P., Marín, F.R., Argüelles, J.C., and Hernández, J.A. 2005. Correlation between the intracellular content of glutathione and the formation of germ-tubes induced by human serum in Candida albicans. Biochim. Biophys. Acta 1722, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Hasim, S., Hussin, N.A., Alomar, F., Bidasee, K.R., Nickerson, K.W., and Wilson, M.A. 2014. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. J. Biol. Chem. 289, 1662–1674.

    Article  CAS  PubMed  Google Scholar 

  • Huh, W.K., Lee, B.H., Kim, S.T., Kim, Y.R., Rhie, G.E., Baek, Y.W., Hwang, C.S., Lee, J.S., and Kang, S.O. 1998. D-Erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Mol. Microbiol. 30, 895–903.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, C.S., Oh, J.H., Huh, W.K., Yim, H.S., and Kang, S.O. 2003. Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol. Microbiol. 47, 1029–1043.

    Article  CAS  PubMed  Google Scholar 

  • Kalapos, M.P. 2008. Methylglyoxal and glucose metabolism: a historical perspective and future avenues for research. Drug Metabol. Drug Interact. 23, 69–91.

    CAS  PubMed  Google Scholar 

  • Kim, B.J., Choi, C.H., Lee, C.H., Jeong, S.Y., Kim, J.S., Kim, B.Y., Yim, H.S., and Kang, S.O. 2005. Glutathione is required for growth and prespore cell differentiation in Dictyostelium. Dev. Biol. 284, 387–398.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.S., Seo, J.H., and Kang, S.O. 2014. Glutathione initiates the development of Dictyostelium discoideum through the regulation of YakA. Biochim. Biophys. Acta Mol. Cell Res. 1843, 664–674.

    Article  CAS  Google Scholar 

  • Kosmachevskaya, O.V., Shumaev, K.B., and Topunov, A.F. 2015. Carbonyl stress in bacteria: causes and consequences. Biochemistry Moscow 80, 1655–1671.

    Article  CAS  PubMed  Google Scholar 

  • Ku, M., Baek, Y.U., Kwak, M.K., and Kang, S.O. 2017. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes. Biochim. Biophys. Acta Gen. Subj. 1861, 772–788.

    Article  CAS  PubMed  Google Scholar 

  • Kwak, M.K., Ku, M., and Kang, S.O. 2014. NAD+-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans. FEBS Lett. 588, 1144–1153.

    Article  CAS  PubMed  Google Scholar 

  • Kwak, M.K., Ku, M., and Kang, S.O. 2018. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Biochim. Biophys. Acta Gen. Subj. 1862, 18–39.

    Article  CAS  PubMed  Google Scholar 

  • Kwak, M.K., Lee, M.H., Park, S.J., Shin, S.M., Liu, R., and Kang, S.O. 2016. Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione. FEBS Lett. 590, 739–749.

    Article  CAS  PubMed  Google Scholar 

  • Kwak, M.K., Song, S.H., Ku, M., and Kang, S.O. 2015. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid. FEBS Lett. 589, 1863–1871.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H.M., Seo, J.H., Kwak, M.K., and Kang, S.O. 2017. Methylglyoxal upregulates Dictyostelium discoideum slug migration by triggering glutathione reductase and methylglyoxal reductase activity. Int. J. Biochem. Cell Biol. 90, 81–92.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.L., Chen, H.J., and Hou, W.C. 2002. Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulfate polyacrylamide gels. Electrophoresis 23, 513–516.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Köhler, J.R., and Fink, G.R. 1994. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1744.

    Article  CAS  PubMed  Google Scholar 

  • Lo, H.J., Köhler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Matthis, A.L. and Erman, J.E. 1995. Cytochrome c peroxidase-catalyzed oxidation of yeast iso-1 ferrocytochrome c by hydrogen peroxide. Ionic strength dependence of the steady-state parameters. Biochemistry 34, 9985–9990.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, F.L., Wilson, D., and Hube, B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4, 119–128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michán, C. and Pueyo, C. 2009. Growth phase-dependent variations in transcript profiles for thioredoxin- and glutathione-dependent redox systems followed by budding and hyphal Candida albicans cultures. FEMS Yeast Res. 9, 1078–1090.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y. and Asada, K. 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28, 131–140.

    CAS  Google Scholar 

  • Nasution, O., Srinivasa, K., Kim, M., Kim, Y.J., Kim, W., Jeong, W., and Choi, W. 2008. Hydrogen peroxide induces hyphal differentiation in Candida albicans. Eukaryot. Cell 7, 2008–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton, G.L. and Fahey, R.C. 1995. Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. Methods Enzymol. 251, 148–166.

    Article  CAS  PubMed  Google Scholar 

  • Overbaugh, J.M. and Fall, R. 1985. Characterization of a selenium-independent glutathione peroxidase from Euglena gracilis. Plant Physiol. 77, 437–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pailla, K., Blonde-Cynober, F., Aussel, C., DeBandt, J.P., and Cynober, L. 2000. Branched-chain keto-acids and pyruvate in blood: measurement by HPLC with fluorimetric detection and changes in older subjects. Clin. Chem. 46, 848–853.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.J., Kwak, M.K., and Kang, S.O. 2017. Schiff bases of putrescine with methylglyoxal protect from cellular damage caused by accumulation of methylglyoxal and reactive oxygen species in Dictyostelium discoideum. Int. J. Biochem. Cell Biol. 86, 54–66.

    Article  CAS  PubMed  Google Scholar 

  • Penning, T.M. 2015. The aldo-keto reductases (AKRs): overview. Chem. Biol. Interact. 234, 236–246.

    Article  CAS  PubMed  Google Scholar 

  • Pogolotti, A.L.Jr. and Santi, D.V. 1982. High-pressure liquid chromatography-ultraviolet analysis of intracellular nucleotides. Anal. Biochem. 126, 335–345.

    Article  CAS  PubMed  Google Scholar 

  • Ray, M. and Ray, S. 1982. Purification and characterization of NAD and NADP-linked α-ketoaldehyde dehydrogenases involved in catalyzing the oxidation of methylglyoxal to pyruvate. J. Biol. Chem. 257, 10566–10570.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, S.G., Chang, T.S., Bae, Y.S., Lee, S.R., and Kang, S.W. 2003. Cellular regulation by hydrogen peroxide. J. Am. Soc. Nephrol. 14, S211–S215.

    Article  CAS  PubMed  Google Scholar 

  • Saikusa, T., Rhee, H., Watanabe, K., Murata, K., and Kimura, A. 1987. Metabolism of 2-oxoaldehydes in bacteria: purification and characterization of methylglyoxal reductase from Escherichia coli. Agric. Biol. Chem. 51, 1893–1899.

    CAS  Google Scholar 

  • Sherman, F. 2002. Getting started with yeast. Methods Enzymol. 350, 3–41.

    Article  CAS  PubMed  Google Scholar 

  • Shin, Y., Lee, S., Ku, M., Kwak, M.K., and Kang, S.O. 2017a. Cytochrome c peroxidase regulates intracellular reactive oxygen species and methylglyoxal via enzyme activities of erythroascorbate peroxidase and glutathione-related enzymes in Candida albicans. Int. J. Biochem. Cell Biol. 92, 183–201.

    Article  CAS  PubMed  Google Scholar 

  • Shin, S.M., Song, S.H., Lee, J.W., Kwak, M.K., and Kang, S.O. 2017b. Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis. Int. J. Biochem. Cell Biol. 91, 14–28.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, B.J., Navid, A., Kulp, K.S., Knaack, J.L.S., and Bench, G. 2013. D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae. Yeast 30, 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Swoboda, R.K., Bertram, G., Delbrück, S., Ernst, J.F., Gow, N.A., Gooday, G.W., and Brown, A.J. 1994. Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect underlying changes in growth and are not a response to cellular dimorphism. Mol. Microbiol. 13, 663–672.

    Article  CAS  PubMed  Google Scholar 

  • Szent-Györgyi, A., Együd, L.G., and McLaughlin, J.A. 1967. Ketoaldehydes and cell division. Science 155, 539–541.

    Article  PubMed  Google Scholar 

  • Thornalley, P.J. 2008. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems — role in ageing and disease. Drug Metabol. Drug Interact. 23, 125–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornalley, P.J., Langborg, A., and Minhas, H.S. 1999. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344, 109–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Jagt, D.L. and Davison, L.M. 1977. Purification and characterization of 2-oxoaldehyde dehydrogenase from rat liver. Biochim. Biophys. Acta 484, 260–267.

    Article  CAS  PubMed  Google Scholar 

  • Yonetani, T. and Ray, G.S. 1966. Studies on cytochrome c peroxidase: 3. Kinetics of the peroxidatic oxidation of ferrocytochrome c catalyzed by cytochrome c peroxidase. J. Biol. Chem. 241, 700–706.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank W.A. Fonzi, M. Whiteway and G.R. Fink for providing the C. albicans strains and plasmids. This work was supported by the Research Fellowship of the BK21plus project.

Author information

Authors and Affiliations

Authors

Contributions

The research was designed by M.-K.K., and S.-O. K. The experiments were performed by M.-K.K. Data analysis was performed by M.-K.K., and S.-O. K. New reagents/analytic tools were provided by M.-K.K. The paper was written by M.-K.K.

Corresponding authors

Correspondence to Sa-Ouk Kang or Min-Kyu Kwak.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, SO., Kwak, MK. Alcohol dehydrogenase 1 and NAD(H)-linked methylglyoxal oxidoreductase reciprocally regulate glutathione-dependent enzyme activities in Candida albicans. J Microbiol. 59, 76–91 (2021). https://doi.org/10.1007/s12275-021-0552-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0552-7

Keywords

Navigation