Skip to main content

Advertisement

Log in

Antifungal and Oral Anticancer Therapy Drug Interactions

  • Pharmacology and Pharmacodynamics of Antifungal Agents (J Amsden, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In the past 5 years, there has been a significant expansion in the oncology arsenal. These new oncolytic therapies are being incorporated with traditional cytotoxic chemotherapy or used as single-agent therapy. Disease states such as acute and chronic leukemias have seen some the largest therapy expansion in decades. Frequently, these patients often necessitate the use of antifungals in either the prophylaxis or treatment setting. This review provides a brief overview of recently approved oncolytic therapies and the drug-drug interactions (DDIs) that clinicians encounter when managing antifungal therapies.

Recent Findings

DDIs between the newer oncolytic and systemic azole antifungals frequently exist and require treatment modification or use of alternative antifungal therapies. Recent literature and center specific evaluations of antifungal therapy and oral chemotherapy drug interactions are reviewed.

Summary

As the oncolytic arsenal has expanded treatment options for cancer patients, it is important for clinicians to be aware of significant DDIs and the potential impact on treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. US Food and Drug Administration. Advancing health through innovation: 2018 new drug therapy approvals. 2019. https://www.fda.gov/files/drugs/published/New-Drug-Therapy-Approvals-2018_3.pdf. Accessed September 1, 2019.

  2. US Food and Drug Administration. Advancing health through innovation: 2017 new drug therapy approvals. 2018. https://www.fda.gov/files/about%20fda/published/2017-New-Drug-Therapy-Approvals-Report.pdf. Accessed September 1, 2019.

  3. Nivoix Y, Levêque D, Herbrecht R, Koffel JC, Beretz L, Ubeaud-Sequier G. The enzymatic basis of drug-drug interactions with systemic triazole antifungals. Clin Pharmacokinet. 2008;47(12):779–92.

    Article  CAS  Google Scholar 

  4. • National Comprehensive Cancer Network. Prevention and Treatment of Cancer-Related Infections (Version 1.2019). https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf. Accessed October 2, 2019. Guidelines for prevention of infection in cancer patients.

  5. •• Taplitz RA, Kennedy EB, Bow EJ, Crews J, Gleason C, Hawley DK, et al. Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. J Clin Oncol. 2018;36:3043–54 Major guideline update.

    Article  Google Scholar 

  6. Maertens JA, Raad II, Marr KA, Patterson TF, Kontoyiannis DP, Cornely OA, et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillosis and other filamentous fungi (SECURE): a phase 3, randomized-controlled, non-inferiority trial. Lancet. 2016;387:760–9.

    Article  CAS  Google Scholar 

  7. • Fontana L, Perlin DS, Zhao Y, Noble BN, Lewis JS, Strasfeld L, et al. Isasvuconazole prophylaxis in patients with hematologic malignancies and hematopoietic cell transplant. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz282Center specific retrospective reporting of breakthrough fungal infections with isavuconazole.

  8. Rausch CR, DiPippo AJ, Prithviraj B, Kontoyiannis DP. Breakthrough fungal infection in patients with leukemia receiving isavuconazole. Clin Infect Dis. 2018;67(10):1610–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis. 2017;21(1):1–20.

    Article  Google Scholar 

  10. Sychev DA, Ashraf GM, Svistunov AA, et al. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des Devel Ther. 2018;12:1147–56.

    Article  CAS  Google Scholar 

  11. Clinical Drug Interaction Studies - Study Design, Data Analysis, and Clinical Implications Guidance for Industry. 2017. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug-interaction-studies-study-design-data-analysis-and-clinical-implications-guidance. Accessed October 1, 2019.

  12. NOXAFIL [package insert]. Whitehouse Station, NJ:Merck & Co;2017.

  13. VFEND [package insert]. New York, NY, Pfizer Labs;2019.

  14. CRESEMBA [package insert]. Northbrook, IL: Astellas Pharma US;2018.

  15. DIFLUCAN [package insert]. New York, NY:Pfizer Labs;2019.

  16. SPORANOX [package insert]. Titusville, NJ: Janssen Pharmaceuticals;2019.

  17. NIZORAL [package insert]. Titusville, NJ: Janssen Pharmaceuticals;2013.

  18. VENCLEXTA [package insert]. North Chicago, IL: AbbVie Inc.; 2019.

  19. DAURISMO [package insert]. New York, NY: Pfizer Labs; 2018.

  20. TIBSOVO [package insert]. Cambridge, MA: Agios Pharmaceuticals, Inc.; 2019.

  21. VERZENIO [package insert]. Indianapolis, IN: Eli Lilly and Company; 2019.

  22. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208716Orig1s000TOC.cfm. Accessed January 17, 2020.

  23. CALQUENCE [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals; 2017.

  24. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/210259Orig1s000TOC.cfm. Accessed January 17, 2020.

  25. PIQRAY [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2019.

  26. DOPTELET [package insert]. Durham, NC: AkaRx, Inc.; 2019.

  27. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210238Orig1s000TOC.cfm. Accessed January 21, 2020.

  28. MEKTOVI [package insert]. Boulder, CO: Array BioPharm Inc.; 2019.

  29. ALUNBRIG [package insert]. Cambridge, MA: Takeda Pharmaceutical Company; 2018.

  30. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208772Orig1s000TOC.cfm. Accessed January 22, 2020.

  31. NUBEQA [package insert]. Whippany, NJ: Bayer HealthCare Pharmaceuticals Inc; 2019.

  32. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212099Orig1s000TOC.cfm. Accessed January 22, 2020.

  33. VIZIMPRO [package insert]. New York, NY: Pfizer Labs; 2018.

  34. COPIKTRA [package insert]. Needham, MA: Verastem, Inc; 2019.

  35. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211155Orig1Orig2s000TOC.cfm. Accessed January 17, 2020.

  36. BRAFTOVI [package insert]. Boulder, CO: Array BioPharm Inc;2019.

  37. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210496Orig1s000TOC.cfm. Accessed January 26, 2020.

  38. ROZLYTREK [package insert]. South San Francisco, CA: Genetech USA, Inc; 2019.

  39. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212725Orig1s000,%20212726Orig1s000TOC.cfm. Accessed January 26, 2020.

  40. IDHIFA [package insert]. Summit, NJ: Celegene Corporation; 2019.

  41. BALVERSA [package insert]. Horsham, PA: Janssen Products LP.;2019.

  42. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212018Orig1s000TOC.cfm. Accessed January 26, 2020.

  43. INREBIC [package insert]. Summit, NJ,:Celegene Corporation; 2019.

  44. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212327Orig1s000TOC.cfm. Accessed January 26, 2020.

  45. XOSPATA [package insert]. Northbrook, IL: Astellas; 2019.

  46. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211349Orig1_toc.cfm. Accessed January 19, 2020.

  47. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210656Orig1s000TOC.cfm. Accessed January 19, 2020.

  48. IMBRUVICA [package insert]. Sunnyvale, CA: Pharmacyclics; 2019.

  49. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=205552. Accessed January 19, 2020.

  50. U.S. Food & Drug Administration Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211192Orig1s000TOC.cfm. Accessed January 19, 2020.

  51. VITRAKVI [package insert]. Whippany, NJ: Bayer HealthCare Pharmaceuticals Inc.; 20.

  52. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210861Orig1s000_21171Orig1s000TOC.cfm. Accessed January 26, 2020.

  53. MULPLETA [package insert]. Florham Park, NJ: Shionogi & Co.; 2019.

  54. LORBRENA [package insert]. New York, NY: Pfizer Labs; 2018.

  55. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210868Orig1s000TOC.cfm. Accessed January 26, 2020.

  56. RYDAPT [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2019.

  57. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/207997Orig1Orig2s000TOC.cfm. Accessed January 20, 2020.

  58. NERLYNX [package insert]. Los Angeles, CA: Puma Biotechnology, Inc.; 2018.

  59. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208051Orig1s000TOC.cfm. Accessed January 26, 2020.

  60. ZEJULA [package insert]. Waltham, MA: TESARO, Inc.; 2019.

  61. TURALIO [package insert]. Basking Ridge, NJ: Daiichi Sankyo, Inc.; 2019.

  62. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211810Orig1s000TOC.cfm. Accessed January 26, 2020.

  63. RUBRACA [package insert]. Boulder, CO: Clovis Oncology, Inc.; 2018.

  64. XPOVIO [package insert]. Newton, MA: Karyopharm Therapeutics Inc.; 2019.

  65. TALZENNA [package insert]. New York, NY: Pfizer Labs; 2019.

  66. U.S. Food & Drug Administration. Drugs@FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/208573Orig1s000TOC.cfm. Accessed January 21, 2020.

  67. Freise KJ, Hu B, Salem AH. Impact of ritonavir dose and schedule on CYP3A inhibition and venetoclax clinical pharmacokinetics. Eur J Clin Pharmacol. 2018;74(4):413–21.

    Article  CAS  Google Scholar 

  68. Porta-Sanchez A, Gilbert C, Spears D, Amir E, Chan J, Nanthakumar K, et al. Incidence, diagnosis and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc. 2017;6:e007724.

    Article  Google Scholar 

  69. Strevel E, Ing D, Siu L. Moleculary targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol. 2007;25:3362–71.

    Article  CAS  Google Scholar 

  70. Woolsey RL, Heise CW, Gallo T, et al: QTdrugs list. https://crediblemeds.org/ Accessed October 7, 2019.

  71. •• Rogala B, Charpentier M, Nguyen M, Landolf K, Hamad L, Gaertner K. Oral anticancer therapy: management of drug interactions. J Oncol Pract. 2019;15:81–90 Recent high quality review of all oral chemotherapy and management of drug-drug interactions.

    Article  Google Scholar 

  72. Maschmeyer G, DeGreef J, Mellinghoff SC, Nosari A, Thiebaut-Bertrand A, Bergeron A, et al. Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by European Conference on Infections in Leukemia (ECIL). Leukemia. 2019;33:844–62.

    Article  CAS  Google Scholar 

  73. Reinwald M, Silva JT, Mueller NJ, Fortun J, Garzoni C, de Fijter JW, et al. ESCMID study group for infections in compromised hosts (ESGICH) Consenus Document on the safety of targeted and biological therapies: an infectious diseases perspective intracellular signaling pathways: tyrosine kinase and mTOR inhibitors. Clin Microbiol Infect. 2018, 24:S53–70.

  74. Hilal T, Gea-Banacloche JC, Leis JF. Chronic lymphocytic leukemia and infection risk in the era of targeted therapies: linking mechanisms with infections. Blood Rev. 2018;32:387–99.

    Article  Google Scholar 

  75. U.S. Food & Drug Administration. Drugs@FDA. Available at https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209606Orig1s000MultidisciplineR.pdf. Accessed January 11th, 2020.

  76. National Comprehensive Cancer Network. NCCN Acute Myeloid Leukemia (Version 2.2020) https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf. Accessed October 23rd, 2019.

  77. National Comprehensive Cancer Network. NCCN Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma(Version 2.2020). https://www.nccn.org/professionals/physician_gls/pdf/cll.pdf. Accessed October 16th, 2019.

  78. •• Varughese T, Taur Y, Cohen N, Palomba L, Seo SK, Hohl TM, et al. Serious infections in patients receiving ibrutinib for treatment of lymphoid cancer. Clin Infect Dis. 2018;67(5):687–92 New reports of infections while using Ibrutinib therapy.

    Article  CAS  Google Scholar 

  79. •• Chamilos G, Lionakis MS, Kontoyiannis DP. Call for action: invasive fungal infections associate with ibrutinib and other small molecule kinase inhibitors targeting immune signaling pathways. Clin Infect Dis. 2018;66(1):140–8 New reports of invasive fungal infections with Ibrutinib therapy.

    Article  CAS  Google Scholar 

  80. De Jong J, Skeo D, Murphy J, Sukbuntherng J, Hellemans J, et. al. Effect of CYP3A perpetrators on Ibrutinib exposure in healthy participants. Pharmacol Res Perspect2015;3(4):e00156.

  81. De Jong J, Hellemans J, DeWilde S, Patricia D, Masteron T, et al. A drug-drug interaction study of Ibrutinib with moderate strong CYP3A inhibitors in patients with B-cell malignancies. Leuk Lymphoma. 2018;12(59):2888–95.

    Article  Google Scholar 

  82. Tapaninen T, Olkkola AM, Tornio A, Neuvonen M, Elonen E. Itraconazole increases Ibrutinib exposure 10-fold and reduces interindividual variation-a potentially beneficial drug-drug interaction. Clin Transl Sci. 2019. https://doi.org/10.1111/cts.12716.

  83. Dai D, Yang H, Nabhan A, Liu H, Hickman D, et al. Effect of itraconazole, food and ethnic origin on the pharmacokinetics of ivosidenib in health subjects. Eur J Clin Pharmacol. 2019;75:1099–108.

    Article  CAS  Google Scholar 

  84. Walker AR, Wang H, Walsh K, Bhatnagar B, Vasu S, Garzon R, et al. Midostaurin, bortezomib, and MEC in relapsed/refractory acute myeloid leukemia. Leuk Lymphoma. 2016;57(9):2100–8. https://doi.org/10.3109/10428194.2015.1135435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schlenk RF, Weber D, Fieldler W, Salih HR, Wulf G, et al. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT-3 ITD. Blood. 2019;133(8):840–51.

    Article  CAS  Google Scholar 

  86. Fischer T, Stone RM, DeAngelo DJ, Galinsky J, Estey E, et al. Phase IIB trial of oral midostaurin (PKC412) the FMS-like tyrosine kinase 3 receptor (FLT-3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high risk myelodysplastic syndrome with either wild-type or muted FLT-3. J Clin Oncol. 2010;28:4339–45.

    Article  CAS  Google Scholar 

  87. Stone RM, Mandrekar SJ, Sandford BL, Lauman K, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT-3 mutation. N Engl J Med. 2017;377:454–64.

    Article  CAS  Google Scholar 

  88. • Tollkuci E. Isavuconazole therapy in an FLT3 mutated acute myeloid leukemia patient receiving midostaurin: a case report. J Oncol Pharm Pract. 2018;28(4):987–9. https://doi.org/10.1177/1078155218764257Case report using midostaurin and isavuconazole.

    Article  Google Scholar 

  89. DiNardo CD, Pratz K, Pullardkat V, Jonas BA, Arellano M, et al. Venetoclax combined with decitabine or azacitidine in treatment-naïve, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17.

    Article  CAS  Google Scholar 

  90. • Agarwal SK, CD DN, Potluri J, Dunbar M, Kantarjian HM, Humerickhouse RA, et al. Management of venetoclax-posaconazole interaction in acute myeloid leukemia patients: evaluation of dose adjustments. Clin Ther. 2017;39:359–67 Publication providing guidance on dosing of venetoclax while on strong CYP3A4 inhibitor, posaconazole.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Leslie.

Ethics declarations

Conflict of Interest

Christopher Walczak reports personal fees from Seattle Genetics and Puma Biotechnology outside the submitted work. Chelsea Gustafson, Molly Koslosky, and Jill Leslie declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pharmacology and Pharmacodynamics of Antifungal Agents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustafson, C., Koslosky, M., Leslie, J. et al. Antifungal and Oral Anticancer Therapy Drug Interactions. Curr Fungal Infect Rep 14, 130–140 (2020). https://doi.org/10.1007/s12281-020-00386-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-020-00386-3

Keywords

Navigation