Skip to main content

Advertisement

Log in

An improved differential evolution algorithm for optimization including linear equality constraints

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

A differential evolution algorithm (DE) is proposed to exactly satisfy the linear equality constraints present in a continuous optimization problem that may also include additional non-linear equality and inequality constraints. The proposed DE technique, denoted by DELEqC-II, is an extension of a previous method developed by the authors. In contrast to the previous approach, it uses both mutation and crossover strategies that maintain feasibility with respect to the linear equality constraints. Also, a procedure to correct numerical errors detected in the previous approach was incorporated in DELEqC-II. In the numerical experiments, scalable test-problems with linear equality constraints are used to analyze the performance of the new proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://github.com/ciml.

References

  1. Kusakci AO, Can M (2012) Constrained optimization with evolutionary algorithms: a comprehensive review. South East Eur J Soft Comput 1(2):16–24

    Google Scholar 

  2. Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9(1):1–17

    Article  MATH  Google Scholar 

  3. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186:311–338

    Article  MATH  Google Scholar 

  4. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287

    Article  MathSciNet  MATH  Google Scholar 

  5. Datta R, Deb K (eds) (2015) Evolutionary constrained optimization, infosys science foundation series. Springer, Mumbai

    Google Scholar 

  6. Mezura-Montes E, Coello CAC (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evolut Comput 1(4):173–194

    Article  Google Scholar 

  7. Ullah ASSMB, Sarker R, Lokan C (2012) Handling equality constraints in evolutionary optimization. Eur J Oper Res 221(3):480–490

    Article  MathSciNet  MATH  Google Scholar 

  8. Michalewicz Z, Janikow CZ (1996) Genocop: a genetic algorithm for numerical optimization problems with linear constraints. Commun ACM 39(12es):175–201

    Article  Google Scholar 

  9. Paquet U, Engelbrecht AP (2003) A new particle swarm optimiser for linearly constrained optimisation. In: IEEE congress on evolutionary computation vol 1, pp 227–233

  10. Monson CK, Seppi KD (2005) Linear equality constraints and homomorphous mappings in PSO. In: IEEE congress on evolutionary computation vol 1, pp 73–80

  11. Paquet U, Engelbrecht AP (2007) Particle swarms for linearly constrained optimisation. Fundamenta Informaticae 76(1):147–170

    MathSciNet  MATH  Google Scholar 

  12. Barbosa HJC, Araujo RL, Bernardino HS (2015) A differential evolution algorithm for optimization including linear equality constraints. In: Progress in artificial intelligence: Portuguese conference on artificial intelligence (EPIA). Springer, pp 262–273

  13. Barbosa HJC, Lemonge ACC (2003) A new adaptive penalty scheme for genetic algorithms. Inf Sci 156:215–251

    Article  MathSciNet  Google Scholar 

  14. Storn R, Price KV (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  15. Price KV (1999) An introduction to differential evolution. In: New ideas in optimization, pp 79–108

  16. Luenberger DG, Ye Y (2008) Linear and nonlinear programming. Springer US, Berlin

    Book  MATH  Google Scholar 

  17. Dolan E, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91(2):201–213

    Article  MathSciNet  MATH  Google Scholar 

  18. Barbosa HJC, Bernardino HS, Barreto AMS (2010) Using performance profiles to analyze the results of the 2006 CEC constrained optimization competition. In: IEEE congress on evolutionary computation, pp 1–8

Download references

Acknowledgements

The authors thank the financial support provided by PNPD/CAPES, CNPq (Grant 310778/2013-1), and FAPEMIG (Grant APQ-03414-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heder S. Bernardino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 390 KB)

Appendices

Appendix A: Test-problems

Test-problems 1–5 were taken from [10]. Also note that those problems are subject to the same set of linear constraints, described in Fig. 13. Following, the description and the optimal solution value of each problem.

Problem 1 (Sphere):

:

$$\begin{aligned} \min _{x \in \mathcal{E}} \quad \sum ^{n}_{i=1} x_i^2. \end{aligned}$$

The feasible set \(\mathcal{E}\) is given by the linear equality constraints in Fig. 13 and \(f(x^*) = 32.137\).

Problem 2 (Quadratic):

:

$$\begin{aligned}&\min _{x \in \mathcal{E}} \quad \sum ^{n}_{i=1}\sum ^{n}_{j=1} e^{-(x_i - x_j)^2}x_ix_j + \sum ^{n}_ {i=1}x_i\\&f(x^*) = 35.377 \end{aligned}$$
Problem 3 (Rastrigin):

:

$$\begin{aligned}&\min _{x \in \mathcal{E}} \quad \sum ^{n}_{i=1} x_i^2 + 10 - 10\cos (2\pi x_i)\\&f(x^*) = 36.975. \end{aligned}$$
Problem 4 (Rosenbrock):

:

$$\begin{aligned}&\min _{x \in \mathcal{E}} \quad \sum ^{n-1}_{i=1} 100(x_{i+1} - x_i^{2})^2 + (x_i - 1)^2\\&f(x^*) = 21485.3. \end{aligned}$$
Problem 5 (Griewank):

:

$$\begin{aligned}&\min _{x \in \mathcal{E}} \quad \dfrac{1}{4000}\sum ^{n}_{i=1} x_i^2 - \prod ^{n}_{i=10}\cos (\dfrac{x_i}{\sqrt{i}}) + 1\\&f(x^*) = 0.151. \end{aligned}$$

Appendix B: Scaling the test-problems

Problems 1–5 can be scaled by varying the number of variables (n) and the number of constraints (m). Let \(G \in \mathbb {R}^{5 \times 10}\) and \(p \in \mathbb {R}^{5}\) be the coefficient matrix and vector, respectively, associated to the set of linear equality constraints in Fig. 13. Hence

$$\begin{aligned} G = \begin{bmatrix} 0&-3&-1&0&0&2&-6&0&-4&-2 \\ -1&-3&-1&0&0&0&-5&-1&-7&-2 \\ 0&0&1&0&0&1&3&0&-2&2 \\ 2&6&2&2&0&0&4&6&16&4 \\ -1&-6&-1&-2&-2&3&-6&-5&-13&-4 \end{bmatrix} \end{aligned}$$

and \(p^{T} = \begin{bmatrix} 3&0&9&-16&30 \end{bmatrix}\).

Now, let \(0 \in \mathbb {R}^{5 \times 10}\) be a matrix with all values equal to zero. By varying n and m we can construct new sets of linear equality constraints for problems 1–5. Those sets are described as follow.

Constraint-set 1 In (7), setting \(m = 5\) and \(n = 20\) we obtain \(x \in \mathbb {R}^{20}\) and \( E = \begin{bmatrix} G&0 \end{bmatrix} \quad \text{ and } \quad c = \begin{matrix} p \end{matrix}\). The matrix \(E \in \mathbb {R}^{5 \times 20}\) and the vector \(c \in \mathbb {R}^{5}\) now describes the set of linear equality constraints, where E is of the special form \([G \quad 0]\), that is, its columns can be partitioned into two sets; the first 10 columns make up the original G matrix and the last 10 columns make up the 0 matrix. The next constraint-sets, follow the same construction rule.

Constraint-set 2 Setting \(m = 10\) and \(n = 20\) we obtain \( E = \begin{bmatrix} G&0 \\ 0&G \end{bmatrix} \quad \text{ and } \quad c = \begin{bmatrix} p \\ p \end{bmatrix} \).

Constraint-set 3 Setting \(m = 5\) and \(n = 30\), we obtain \( E = \begin{bmatrix} G&0&0 \\ \end{bmatrix} \quad \text{ and } \quad c = \begin{matrix} p \end{matrix} \).

Constraint-set 4 Setting \(m = 15\) and \(n = 30\), we obtain \( E = \begin{bmatrix} G&0&0 \\ 0&G&0 \\ 0&0&G \\ \end{bmatrix} \quad \text{ and } \quad c = \begin{bmatrix} p \\ p \\ p \end{bmatrix} \).

Constraint-set 5 Setting \(m = 5\) and \(n = 40\), we obtain \( E = \begin{bmatrix} G&0&0&0 \\ \end{bmatrix} \quad \text{ and } \quad c = \begin{matrix} p \end{matrix} \).

Constraint-set 6 Setting \(m = 20\) and \(n = 40\), we obtain \( E = \begin{bmatrix} G&0&0&0 \\ 0&G&0&0 \\ 0&0&G&0 \\ 0&0&0&G \\ \end{bmatrix} \) and \(c = \begin{bmatrix} p \\ p \\ p \\ p \end{bmatrix} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, H.J.C., Bernardino, H.S. & Angelo, J.S. An improved differential evolution algorithm for optimization including linear equality constraints. Memetic Comp. 11, 317–329 (2019). https://doi.org/10.1007/s12293-018-0268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-018-0268-3

Keywords

Navigation