Skip to main content
Log in

Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in ΦPSII, qP and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N, E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a, Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a, Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in ΦPSII, qP and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose–response of cowpea plants exposed to the water deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

BRs:

Brassinosteroids

Car:

Carotenoids

CAT:

Catalase

Chl a :

Chlorophyll a

Chl b :

Chlorophyll b

C i :

Intercellular CO2 concentration

CO2 :

Carbon dioxide

E :

Transpiration rate

EBR:

24-epibrassinolide

EL:

Electrolyte leakage

ETR:

Electron transport rate

ETR/P N :

Ratio between the electron transport rate and net photosynthetic rate

EXC:

Relative energy excess at the PSII level

F0 :

Minimal fluorescence yield of the dark-adapted state

Fm :

Maximal fluorescence yield of the dark-adapted state

Fv :

Variable fluorescence

Fv/Fm :

Maximal quantum yield of PSII photochemistry

g s :

Stomatal conductance

H2O2 :

Hydrogen peroxide

LDM:

Leaf dry matter

MDA:

Malondialdehyde

NPQ:

Nonphotochemical quenching

O2 :

Superoxide

P N :

Net photosynthetic rate

P N/C i :

Instantaneous carboxylation efficiency

POX:

Peroxidase

PSII:

Photosystem II

qP :

Photochemical quenching coefficient

RDM:

Root dry matter

ROS:

Reactive oxygen species

RUBISCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SDM:

Stem dry matter

SOD:

Superoxide dismutase

TDM:

Total dry matter

Total Chl:

Total chrolophyllchlorophyll

WUE:

Water-use efficiency

ΦPSII :

Effective quantum yield of PSII photochemistry

Ψw :

Leaf water potential

References

  • Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant Breed 46:27–34

    CAS  Google Scholar 

  • Afzal A, Gulzar I, Shahbaz M, Ashraf M (2014) Water deficit-induced regulation of growth, gas exchange, chlorophyll fluorescence, inorganic nutrient accumulation and antioxidative defense mechanism in mungbean [Vigna radiata (L.)Wilczek]. J Appl Bot-Angew Bot 87:147–156

    Google Scholar 

  • Agele SO, Ofuya TI, James PO (2006) Effects of watering regimes on aphid infestation and performance of selected varieties of cowpea (Vigna unguiculata L. Walp) in a humid rainforest zone of Nigeria. Crop Prot 25:73–78

    Article  Google Scholar 

  • Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2013a) Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced-photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213

    Article  CAS  PubMed  Google Scholar 

  • Ahammed GJ, Ruan YP, Zhou J, Xia XJ, Shi K, Zhou YH, Yu JQ (2013b) Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere 90:2645–2653

    Article  CAS  PubMed  Google Scholar 

  • Alyemeni MN, Hayat S, Wijaya L, Anaji A (2013) Foliar application of 28-homobrassinolide mitigates salinity stress by increasing the efficiency of photosynthesis in Brassica juncea. Acta Bot Bras 27:502–505

    Article  Google Scholar 

  • Amzallag GN, Vaisman J (2006) Influence of brassinosteroids on initiation of the root gravitropic response in Pisum sativum seedlings. Biol Plantarum 50:283–286

    Article  CAS  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Anyia AO, Herzog H (2004) Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Eur J Agron 20:327–339

    Article  Google Scholar 

  • Aragão RM, Silva EN, Vieira CF, Silveira JAG (2012) High supply of NO3 mitigates salinity effects through an enhancement in the efficiency of photosystem II and CO2 assimilation in Jatropha curcas plants. Acta Physiol Plant 34:2135–2143

    Article  Google Scholar 

  • Arora N, Bhardwaj R, Sharma P, Arora HK (2008) Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol Plant 30:833–839

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badawi GH, Yamauchi Y, ShimadaE Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water déficit by overspressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Barbosa MAM, Lobato AKS, Viana GDM, Coelho KNN, Barbosa JRS, Costa RCL, Santos Filho BG, Oliveira Neto CF (2013) Root contribution to water relations and shoot in two contrasting Vigna unguiculata cultivars subjected to water deficit and inoculation. Rom Agric Res 30:155–162

    Google Scholar 

  • Barbosa MR, Silva MMA, Willadino L, Ulisses C, Camara TR (2014) Plant generation and enzymatic detoxification of reactive oxygen species. Cienc Rural 44:453–460

    Article  CAS  Google Scholar 

  • Barbosa AM, Guidorizi KA, Catuchi TA, Marques TA, Ribeiro RV, Souza GM (2015) Biomass and bioenergy partitioning of sugarcane plants under water deficit. Acta Physiol Plant 37:1–8

    Article  CAS  Google Scholar 

  • Behnamnia M, Kalantari KM, Rezanejad F (2009a) Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. Gen Appl Plant Physiol 35:22–34

    CAS  Google Scholar 

  • Behnamnia M, Kalantari KM, Ziaie J (2009b) The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turk J Bot 33:417–428

    Google Scholar 

  • Bertolli SC, Rapchan GL, Souza GM (2012) Photosynthetic limitations caused by different rates of water-deficit induction in Glycine max and Vigna unguiculata. Photosynthetica 50:329–336

    Article  CAS  Google Scholar 

  • Boughalleb F, Abdellaoui R, Brahim NB, Neffati M (2016) Growth, photosynthesis, water use efficiency, and osmoregulation of the wild species Astragalus gombiformis Pomel. Under water deficit. Braz J Bot 39:147–156

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buonasera K, Lambreva M, Rea G, Touloupakis E, Giardi MT (2011) Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants. Anal Bioanal Chem 401:1139–1151

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Cui L, Zou Z, Zhang J, Zhao Y, Yan F (2016) 24-Epibrassinoslide enhances plant tolerance to stress from low temperatures and poor light intensities in tomato (Lycopersicon esculentum Mill.). Funct Integr Genomics 16:29–35

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Derevyanchuk M, Litvinovskaya R, Khripach V, Martinec J, Kravets V (2015) Effect of 24-epibrassinolide on Arabidopsis thaliana alternative respiratory pathway under salt stress. Acta Physiol Plant 37:1–10

    Article  CAS  Google Scholar 

  • Dias MC, Brüggemann W (2010) Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and calvin cycle enzymes. Photosynthetica 48:96–102

    Article  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31:889–897

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Basra SMA, Islam-ud-Din I (2009) Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J Agron Crop Sci 195:262–269

    Article  CAS  Google Scholar 

  • Fernandes-Silva AA, López-Bernal A, Ferreira TC, Villalobos FJ (2016) Leaf water relations and gas exchange response to water deficit of olive (cv. Cobrançosa) in field grown conditions in Portugal. Plant Soil 402:191–209

    Article  CAS  Google Scholar 

  • Frota KMG, Soares RAM, Arêas JAG (2008) Chemical composition of cowpea (Vigna unguiculata L. Walp), BRS-Milênio cultivar. Cienc Tecnol Aliment 28:470–476

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong M, Li YJ, Chen SZ (1998) Abscisic acid-induced thermotolerance in maize seedilings is mediated by calcium and associated with antioxidant systems. J Plant Physiol 153:488–496

    Article  CAS  Google Scholar 

  • Guan XK, Song L, Wang TC, Turner NC, Li FM (2014) Effect of drought on the gas exchange, chlorophyll fluorescence and yield of six different-era spring wheat cultivars. J Agro Crop Sci 201:253–266

    Article  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    Article  CAS  PubMed  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tabacco leaves. Plant Physiol 84:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil, 2nd edn. California Agricultural Experiment Station, San Francisco

    Google Scholar 

  • Hu WH, Yan XH, Xiao YA, Zeng JJ, Qia HJ, Ogweno JO (2013) 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic-Amsterdam 150:232–237

    Article  CAS  Google Scholar 

  • Inman-Bamber NG, Smith DM (2005) Water relations in sugarcane and response to water deficits. Field Crop Res 92:185–202

    Article  Google Scholar 

  • Iqbal A, Khalil IA, Ateeq N, Khan MS (2006) Nutritional quality of important food legumes. Food Chem 97:331–335

    Article  CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Khripach V, Zhabinskii V, Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant wetter crops for the XXI century. Ann Bot-London 86:441–447

    Article  CAS  Google Scholar 

  • Li KR, Feng CH (2011) Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiol Plant 33:1293–1300

    Article  CAS  Google Scholar 

  • Li YH, Liu YJ, Xu XL, Jin M, An LZ, Zhang H (2012) Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biol Plant 56:192–196

    Article  Google Scholar 

  • Li J, Yang P, Gan Y, Yu J, Xie J (2015) Brassinosteroid alleviates chilling-induced oxidative stress in pepper by enhancing antioxidation systems and maintenance of photosystem II. Acta Physiol Plant 37:1–11

    Article  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS Spectroscopy. Current protocols in food analytical chemistry. John Wiley & Sons Inc, Hoboken, NJ, USA

    Google Scholar 

  • Luo HH, Zhang YL, Zhang WF (2016) Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica 54:65–73

    Article  CAS  Google Scholar 

  • Ma CC, Gao YB, Guo HY, Wang JL (2004) Photosynthesis, transpiration and water use efficiency of Caragana microphylla, C. intermedia and C. korshinskii. Photosynthetica 42:65–70

    Article  CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. By propiconazole under water deficit stress. Colloid Surf B 57:69–74

    Article  CAS  Google Scholar 

  • Mansori M, Chernane H, Latique S, Benaliat A, Hsissou D, Kaoua ME (2015) Seaweed extract effect on water deficit and antioxidative mechanisms in bean plants (Phaseolus vulgaris L.). J Appl Phycol 27:1689–1698

    Article  Google Scholar 

  • Marinho JP, Kanamori N, Ferreira LC, Fuganti-Pagliarini R, Carvalho JFC, Freitas RA, Marin SRR, Rodrigues FA, Mertz-Henning LM, Farias JRB, Neumaier N, Oliveira MCN, Marcelino-Guimarães FC, Yoshida T, Fujita Y, Yamaguchi-Shinozaki K, Nakashima K, Nepomuceno AL (2016) Characterization of molecular and physiological pesponses under water deficit of genetically modified soybean plants overexpressing the AtAREB1 transcription factor. Plant Mol Biol Rep 34:410–426

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mousavi EA, Kalantari KM, Jafari SR (2009) Change of some osmolytes accumulation in water-stressed colza (Brassica napus l.) as affected by 24-epibrassinolide. Iran J Sci Technol 33:1–11

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nascimento SP, Bastos EA, Araújo ECE, Freire Filho RR, Silva EM (2011) Tolerance to water deficit of cowpea genotypes. Rev Bras Eng Agríc Ambient 15:853–860

    Article  Google Scholar 

  • Pereira TS, Lima MDR, Paula LS, Lobato AKS (2016) Tolerance to water deficit in cowpea populations resulting from breeding program: detection by gas exchange and chlorophyll fluorescence. Indian J Plant Physiol 21:171–178

    Article  Google Scholar 

  • Perlikowski D, Czyzniejewski M, Marczak L, Augustyniak A, Kosmala A (2016) Water deficit affects primary metabolism differently in two Lolium multiflorum/Festuca arundinacea introgression forms with a distinct capacity for photosynthesis and membrane regeneration. Front Plant Sci 7:1–16

    Google Scholar 

  • Phillips RD, McWatters KH, Chinnan MS, Hung YC, Beuchat LR, Sefa-Dedeh S, Sakyi-Dawson E, Ngoddy P, Nnanyelugo D, Enwere J, Komey NS, Liu K, Mensa-Wilmot Y, Nnanna IA, Okeke C, Prinyawiwatkul W, Safia FK (2003) Utilization of cowpeas for human food. Field Crop Res 82:193–213

    Article  Google Scholar 

  • Qiu Z, Wang L, Zhou Q (2013) Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90:1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar M, Rabert GA, Manivannan P (2016) The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress. Appl Nanosci 6:727–735

    Article  CAS  Google Scholar 

  • Ramakrishna B, Rao SSR (2015) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252:665–677

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RV, Machado EC, Santos MG, Oliveira RF (2009) Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetica 47:215–222

    Article  Google Scholar 

  • Rivas R, Falcão HM, Ribeiro RV, Machado EC, Pimentel C, Santos MG (2016) Drought tolerance in cowpea species is driven by less sensitivity of leaf gas exchange to water deficit and rapid recovery of photosynthesis after rehydration. S Afr J Bot 103:101–107

    Article  CAS  Google Scholar 

  • Sales CRG, Ribeiro RV, Silveira JAG, Machado EC, Martins MO, Lagôa AMMA (2013) Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiol Biochem 73:326–336

    Article  CAS  PubMed  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet AD (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc Natl Acad Sci-Biol 52:119–125

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Athar HR (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55:51–64

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. CR Biol 331:215–225

    Article  Google Scholar 

  • Silva EN, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JAG (2011) Salt stress induced damages on the photosynthesis of physic nut young plants. Sci Agríc 68:62–68

    Article  Google Scholar 

  • Singh SK, Reddy KR (2011) Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. J Photochem Photobio B 105:40–50

    Article  CAS  Google Scholar 

  • Silva EN, Ribeiro RV, Ferreira-Silva SL, Vieira AS, Ponte LFA, Silveira JAG (2012) Coordinate changes in photosynthesis, sugar accumulation and antioxidative enzymes improve the performance of Jatropha curcas plants under drought stress. Biomass Bioenerg 45:270–279

    Article  CAS  Google Scholar 

  • Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56

    Article  CAS  Google Scholar 

  • Spinelli GM, Snyderb RL, Sandenc BL, Shackel KA (2016) Water stress causes stomatal closure but does not reduce canopy evapotranspiration in almond. Agric Water Manage 168:11–22

    Article  Google Scholar 

  • Steel RGD, Torrie JH, Dickey DA (2006) Principles and procedures of statistics: a biometrical approach, 3rd edn. Academic Internet Publishers, Moorpark

    Google Scholar 

  • Thussagunpanit J, Jutamanee K, Kaveeta L, Chai-arree W, Pankean P, Homvisasevongsa S, Suksamrarn A (2015a) Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul 34:320–331

    Article  CAS  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Sonjaroon W, Kaveeta L, Chai-arree W, Pankean P, Suksamrarn A (2015b) Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica 53:312–320

    Article  CAS  Google Scholar 

  • Toscano S, Farieri E, Ferrante A, Romano D (2016) Physiological and biochemical responses in two ornamental shrubs to drought stress. Front Plant Sci 7:1–12

    Article  Google Scholar 

  • Turner NC (1988) Measurement of plant water status by the pressure chamber technique. Irrigation Sci 09:289–308

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang Z, Zheng P, Meng J, Xi Z (2015) Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress. Acta Physiol Plant 37:1–12

    Article  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2006) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Gao CJ, Song LX, Zhou YH, Shi K, Yu JQ (2014) Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant Cell Environ 37:2036–2050

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X (2016) Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant 38:1–13

    Article  Google Scholar 

  • Yi XP, Zhanga YL, Yao HS, Luo HH, Gou L, Chow WS, Zhang WF (2016) Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. J Plant Physiol 194:23–34

    Article  CAS  PubMed  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogués S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Yuan GF, Jia CG, Li Z, Sun B, Zhang LP, Liu N, Wang QM (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126:103–108

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Ahmad A (2011) 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere 85:1574–1584

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhai Z, Tian X, Duan L, Li Z (2008) Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul 56:257–264

    Article  CAS  Google Scholar 

  • Zhang YP, Zhu XH, Ding HD, Yang SJ, Chen YY (2013) Foliar application of 24-epibrassinolide alleviates high-temperature induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica 51:341–349

    Article  CAS  Google Scholar 

  • Zheng Q, Liu J, Liu R, Wu H, Jiang C, Wang C, Guan Y (2016) Temporal and spatial distributions of sodium and polyamines regulated by brassinosteroids in enhancing tomato salt resistance. Plant Soil 400:147–164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA/Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) and Universidade Federal Rural da Amazônia (UFRA/Brazil), awarded to A. K. S. Lobato. While J. V. Lima was supported by a graduate scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. S. Lobato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, J.V., Lobato, A.K.S. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol Mol Biol Plants 23, 59–72 (2017). https://doi.org/10.1007/s12298-016-0410-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-016-0410-y

Keywords

Navigation