Skip to main content

Advertisement

Log in

Phenomics, genomics of oil palm (Elaeis guineensis Jacq.): way forward for making sustainable and high yielding quality oil palm

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Oil palm (Elaeis guineensis Jacq.) is a heterogeneous, perennial crop having long breeding cycle with a genome size of 1.8 Gb. The demand for vegetable oil is steadily increasing, and expected that nearly 240–250 million tons of vegetable oil may be required by 2050. Genomics and next generation technologies plays crucial role in achieving the sustainable availability of oil palm with good yield and high quality. A successful breeding programme in oil palm depends on the availability of diverse gene pool, ex-situ conservation and their proper utilization for generating elite planting material. The major breeding methods adopted in oil palm are either modified recurrent selection or the modified reciprocal recurrent selection method. The QTLs of yield and related traits are chiefly located on chromosome 4, 10, 12 and 15 which is discussed in the current review. The probable chromosomal regions influencing the less height increment is observed to be on chromosomes 4, 10, 14 and 15. Advanced genomic approaches together with bioinformatics tools were discussed thoroughly for achieving sustainable oil palm where more efforts are needed. Major emphasis is given on oil palm crop improvement using holistic approaches of various genomic tools. Also a road map given on the milestones in the genomics and way forward for making oil palm to high yielding quality oil palm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alizadeh F, Abdullah SN, Khodavandi A, Abdullah F, Yusuf UK, Chong PP (2011) Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum. J Plant Physiol 168:1106–1113

    CAS  PubMed  Google Scholar 

  • Arolu IW, Rafii MY, Marjuni M et al (2016) Genetic variability analysis and selection of pisifera palms for commercial production of high yielding and dwarf oil palm planting materials. Ind Crop Prod 90:135–141. https://doi.org/10.1016/j.indcrop.2016.06.006

    Article  Google Scholar 

  • Budiani Asmini, Putranto Riza, Riyadi Imron, Sumaryono Sumaryono, Minarsih H, Faizah Rokhana (2018) Transformation of oil palm calli using CRISPR/Cas9 System: toward genome editing of oil palm. IOP Conference Series: Earth Environ Sci 183:012003. https://doi.org/10.1088/1755-1315/183/1/012003

    Article  Google Scholar 

  • Astorkia M, Hernandez M, Bocs S, Armentia EL, Herran A, Ponce K, León O, Morales S, Quezada N, Orellana F, Wendra F, Sembiring Z, Asmono D, Ritter E (2019) Association mapping between candidate gene SNP and production and oil quality traits in interspecific oil palm hybrids. Plants (Basel) 8(10):377. https://doi.org/10.3390/plants8100377

    Article  CAS  Google Scholar 

  • Astorkia M, Hernandez M, Stéphanie B, Kevin P, Olga L et al (2020) Analysis of the allelic variation in the Shell gene homolog of E. oleifera and design of species specific Shell primers. Euphytica 216(1):1–16

    Google Scholar 

  • Babu R, Nair SK, Kumar A, Venkatesh S, Sekhar JC, Singh NN, Srinivasan G, Gupta HS (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111:888–897

    CAS  PubMed  Google Scholar 

  • Babu BK, Agrawal PK, Gupta HS, Kumar Anil, Bhatt JC (2012) Identification of candidate gene-based SSR markers for lysine and tryptophan metabolic pathways in maize (Zea mays). Plant Breed 131:20–27

    CAS  Google Scholar 

  • Babu BK, Mathur RK, Kumar PN, Ramajayam D, Ravichandran G, Venu MVB (2017) Development, identification and validation of CAPS marker for SHELL trait which governs dura, pisifera and tenera fruit forms in oil palm (Elaeis guineensis Jacq.). PLoS One 12(2):e0171933. https://doi.org/10.1371/journal.pone.0171933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu BK, Mary Rani KL, Sarika Sahu RK, Mathur PN, Kumar GR, Anitha P, Bhagya HP (2019a) Development and validation of whole genome-wide and genic microsatellite markers in oil palm (Elaeis guineensis Jacq.): first microsatellite database (OpSatdb). Sci Rep (Nature) 9(1):1899. https://doi.org/10.1038/s41598-018-37737-7

    Article  CAS  Google Scholar 

  • Babu BK, Mathur RK, Ravichandran G et al (2019b) Genome-wide association study (GWAS) for stem height increment in oil palm (Elaeis guineensis) germplasm using SNP markers. Tree Genet Genom 15:40. https://doi.org/10.1007/s11295-019-1349-2

    Article  Google Scholar 

  • Babu BK, Mathur RK, Ravichandran G, Anitha P, Venu MVB (2019c) Genome-wide association study for leaf area, rachis length and total dry weight in oil palm (Eleaeisguineensis) using genotyping by sequencing. PLoS ONE 14(8):e0220626. https://doi.org/10.1371/journal.pone.0220626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu BK, Mathur RK, Ravichandran G, Anita P, Venu MVB (2020) Genome wide association study (GWAS) and identification of candidate genes for yield and oil yield related traits in oil palm (Eleaeis guineensis) using SNPs by genotyping-based sequencing. Genomics. https://doi.org/10.1016/j.ygeno.2019.06.018

    Article  PubMed  Google Scholar 

  • Bai B, Wang L, Lee M, Zhang Y, Rahmadsyah YA, Ye BQ, Zi YW, Lim CH, Suwanto A, Chua NH, Yue GH (2017) Genome-wide identification of markers for selecting higher oil content in oil palm. BMC Plant Biol 17:93

    PubMed  PubMed Central  Google Scholar 

  • Barcelos E, Amblard P, Berthaud J, Seguin M (2002) Genetic diver-sity and relationship in American and African oil palm as revealed by RFLP and AFLP molecular markers. Pesqui Agropecu Brasil 37:1105–1114. https://doi.org/10.1590/S0100-204X2002000800008

    Article  Google Scholar 

  • Barcelos E, Rios SA, Cunha RNV, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S (2015) Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6:190. https://doi.org/10.3389/fpls.2015.00190

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartholomé J, Van Heerwaarden J, Isik F, Boury C, Vidal M, Plomion C et al (2016) Performance of genomic prediction within and across generations in maritime pine. BMC Genomics 17:604

    PubMed  PubMed Central  Google Scholar 

  • Beirnaert A, Vanderweyen R (1941a) Contribution a l’etude genetique et biometrique des varietes d’Elaeis guineensis Jacq. Publ. Inst. Nat Etude agron Congo Belge Ser Sci 27:1–101

    Google Scholar 

  • Bhagya HP, Babu BK, Gangadharappa PM, Mahantesha Naika BN, Satish D, Mathur RK (2020) Identification of QTLs in oil palm (Elaeis guineensis Jacq.) using SSR markers through association mapping. J Genet. https://doi.org/10.1007/s12041-020-1180-4

    Article  PubMed  Google Scholar 

  • Billotte N, Marseillac N, Risterucci AM et al (2005) Microsatellite based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765

    CAS  Google Scholar 

  • Bovine HAPMAP Consortium (2009) The genetic history of cattle. Science 324:529–532

    Google Scholar 

  • Breton F, Hasan Y, Hariadi S, Lubis Z, De Franqueville H (2006) Characterization of parameters for the development of an early screening test for basal stem rot tolerance in oil palm progenies. J Oil Palm Res 24–36

  • Chen L, Li W, Katin-Grazzini L et al (2018) A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Hortic Res https://doi.org/10.1038/s41438-018-0023-4

  • Chuenpoma N, Volkaerta H (2016) Association mapping identifies markers linked with yield traits in an oil palm breeding population. Thai J Sci Technol 6(4):2560

  • Corley RHV (1973) Effects of plant density on growth and yield of oil palm. Exp Agric 9:169–180

    Google Scholar 

  • Corley RHV (1976a) The genus Elaeis. In: Corley RHV, Hardon JJ, Wood BJ (eds) Oil palm research. Elsevier, Amsterdam, pp 3–5

    Google Scholar 

  • Corley RHV (1976b) The genus Elaeis. In: Oil palm research, pp 3–5

  • Corley RHV, Tinker PHB (2003) The oil palm. Blackwell, Oxford

    Google Scholar 

  • Cros D, Denis M, Sanchez L, Cochard B, Flori A, Durand-Gasselin T, Nouy B, Omore A, Pomies V, Riou V et al (2015) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis Guineensis Jacq.). Theor Appl Genet 128(3):397–410

    Google Scholar 

  • Davierwala AP, Reddy APK, Lagu MD et al (2001) Marker assisted selection of bacterial blight resistance genes in rice. Biochem Genet 39:261–278

    CAS  PubMed  Google Scholar 

  • Dietrich K et al (2011) Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress. Plant Cell 23:381–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiNicolantonio JJ (2014) How calorie-focused thinking about obesity and related diseases may mislead and harm public health. An Altern Public Health Nutr 18(4):571–581

    PubMed  Google Scholar 

  • Durand-Gasselin T, Asmady H, Flori A, Jacquemard JC, Hayun Z, Breton F et al (2005) Possible sources of genetic resistance in oil palm (Elaeis guineensis Jacq.) to basal stem rot caused by Ganoderma boninense-prospects for future breeding. Mycopathologia 159:93–100. https://doi.org/10.1007/s11046-004-4429-1

    Article  CAS  PubMed  Google Scholar 

  • Edem DO (2002) Palm oil: biochemical, physiological, nutritional, hematological, and toxicological aspects: a review. Plant Foods Hum Nutr 7:319–41

    Google Scholar 

  • Eilander A, Harika RK, Zock PL (2015) Intake and sources of dietary fatty acids in Europe: are current population intakes of fats aligned with dietary recommendations? Eur J Lipid Sci Technol 117(9):1370–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13:2944–2963

    CAS  PubMed  Google Scholar 

  • Guarín Osorio-JA, Garzón-Martínez GA, Delgadillo-Duran P et al (2019) Genome-wide association study (GWAS) for morphological and yield-related traits in an oil palm hybrid (Elaeis oleifera x Elaeis guineensis) population. BMC Plant Biol 19:533. https://doi.org/10.1186/s12870-019-2153-8

    Article  CAS  Google Scholar 

  • Harpaz I, Applebaum S (1961) Accumulation of asparagine in maize plants infected by maize rough dwarf virus and its significance in plant virology. Nature 192:780–781

    CAS  Google Scholar 

  • Hartley CWS (1977a) The oil palm, 2nd edn. Longman, London

    Google Scholar 

  • Hartley CWS (1977b) The oil palm: (Elaeis guineensis Jacq.). Longman, London

    Google Scholar 

  • Hartley CWS (1988) The oil palm, 3rd edn. Longman, London

    Google Scholar 

  • Idris A, Kushairi A, Ismail S, Ariffin D (2004) Selection for partial resistance in oil palm progenies to Ganoderma basal stem rot. J Oil Palm Res 16(2):12–18

    Google Scholar 

  • Isik F, Holland J, Maltecca C (2017) Genetic data analysis for plant and animal breeding. Springer, Cham. https://doi.org/10.1007/978-3-319-55177-7

  • Ithnin M, Xu Y, Marhalilm M, Norhalida M, Amiruddin MD, Low L, Tan Y-C, Yap S-J, Li C, Rajanaidu N, Singh R, Xu S (2017) Multiple locus genome-wide association studies for important economic traits of oil palm. Tree Genet Genom 13:103

    Google Scholar 

  • Jeennor S, Volkaert H (2014) Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (Elaeis guineensis Jacq.). Tree Genet Genom 10:1–14

    Google Scholar 

  • Jiang W, Yang B, Weeks DP (2014) Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One 9:e99225

    PubMed  PubMed Central  Google Scholar 

  • Jin J, Lee M, Bai B, Sun Y, Jing Qu, Rahmadsyah YA, Lim CH, Suwanto A, Sugiharti M, Wong L, Ye J, Chua N-H, Yue GH (2016) Draft genome sequence of an elite Dura palm and whole-genome patterns of DNA variation in oil palm. DNA Res 23(6):527–533. https://doi.org/10.1093/dnares/dsw036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinge T, Mih A (2011) Ganoderma ryvardense sp. nov. associated with basal stem rot (BSR) disease of oil palm in Cameroon

  • Kwong QB, Ong AL, The CK, Chew FT, Tammi M, Mayes S, Kulaveerasingam H, Yeoh SH, Harikrishna JA, Appleton DR (2017) Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis Guineensis Jacq.). Sci Rep 7(1):2872

    PubMed  PubMed Central  Google Scholar 

  • Hooper L, Summerbell C, Julian Higgins, Rachel Thompson et al (2001) Dietary fat intake and prevention of cardiovascular disease: Systematic review. BMJ (Clinical research ed.) 322:757–63. https://doi.org/10.1136/bmj.322.7289.757

    Article  Google Scholar 

  • Lee M, Xia JH, Zou Z, Jian Y, Rahmadsyah YA et al (2015) A consensus linkage map of oil palm and a major QTL for stem height. Sci Rep 5:8232. https://doi.org/10.1038/srep08232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei X, Xiao Y, Xia W, Mason AS, Yang Y, Ma Z et al (2014) RNA-Seq analysis of oil palm under cold stress reveals a different C-repeat binding factor (CBF) mediated gene expression pattern in Elaeis guineensis compared to other species. PLoS ONE 9(12):e114482. https://doi.org/10.1371/journal.pone.0114482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz P, Auty D, Achim A, Beaulieu J, Mackay J (2013) Genetic improvement of white spruce mechanical wood traits—early screening by means of acoustic velocity. Forests 4:575–94

    Google Scholar 

  • Lobelius (1581) (Mathias de Lobel). Kruydtboeck, Antwerp

  • Lucci P, Borrero M, Ruiz Alvaro, Pacetti Deborah, Frega N, Diez O et al (2015) Palm oil and cardiovascular disease: a randomized trial of the effects of hybrid palm oil supplementation on human plasma lipid patterns. Food Fun. https://doi.org/10.1039/c5fo01083g

    Article  Google Scholar 

  • Mathew LS, Spannagl M, Al-Malki A, George B, Torres MF, Al-Dous EK, Al-Azwani EK, Hussein E, Mathew S, Mayer KFX (2014) A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC Genom 15:285

    Google Scholar 

  • Meunier J (1975) Lepalmieràhuileaméricain Elaeismelanococca. Oléagineux 30:51–61

    Google Scholar 

  • Montoya C, Lopes R, Albert F et al (2013) Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (H.B.K.) Cortés and oil palm (Elaeis guineensis Jacq.). Tree Genet Genom 9:1207–1225

    Google Scholar 

  • Montoya C, Cochard B, Flori A, Cros D, Lopes R, et a. (2014) Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Corte’s. PLoS ONE 9 (5): e95412. https://doi.org/10.1371/journal.pone.0095412

  • Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97:12649–12654

    PubMed  PubMed Central  Google Scholar 

  • Mozaffarian D, Clarke R (2010) Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur J Clin Nutr 63:S22-33

    Google Scholar 

  • Murugesan P, Aswathy GM, Sunil Kumar K, Masilamani P, Kumar V, Ravi V (2017) Oil palm (Elaeis guineensis) genetic resources for abiotic stress tolerance: a review. Indian J Agri Sci 171:12–17

    Google Scholar 

  • Billotte N, Jourjon M-F, Marseillac N, Berger A, Flori, A, Asmady H, Adon B, Singh R, Nouy B, Potier FC, et al (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–87. https://doi.org/10.1007/s00122-010-1284-y

  • Ooi S, Rajanaidu N (1979) Establishment of oil palm genetic resources—theoretical and practical considerations. Malays Appl Biol 8:15–28

    Google Scholar 

  • Otto MC, Mozaffarian D, Kromhout D, Bertoni AG, Sibley CT et al (2012) Dietary intake of saturated fat by food source and incident cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr 96:397–404

    Google Scholar 

  • Parveez GKA, Rasid OA, Masani MYA et al (2015) Biotechnology of oil palm: strategies towards manipulation of lipid content and composition. Plant Cell Rep 34:533–543

    CAS  PubMed  Google Scholar 

  • Pieters MM, de Maat (2015) Diet and haemostasis—a comprehensive overview. Blood Rev 29(4):231–241

  • Pootakham W, Jomchai N, Areerate P, Shearman JR, Sonthirod C, Sangsrakru D, Tragoonrung S, Tangphatsornruang S (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm, using genotyping-by sequencing (GBS). Genomics 105:288–295

    CAS  Google Scholar 

  • Putranto RA, Syahputra I, Budiani A (2016) Differential gene expression in oil palm varieties susceptible and tolerant to ganoderma. In: Proceedings of the 6th Indonesian Biotechnology Conference Enhancing industrial competitiveness through biotechnology innovation (Surakarta: Universitas Sebeleas Maret), p 233

  • Rabara RC, Tripathi P, Lin J, Rushton PJ (2012) Dehydration-induced WRKY genes from tobacco and soybean respond to jasmonic acid treatments in BY-2 cell culture. Biochem Biophys Res Comm 431:409–414

    Google Scholar 

  • Raineri J, Wang S, Peleg Z, Blumwald E, Chan RL (2015) The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Mol Biol 88:401–413. https://doi.org/10.1007/s11103-015-0329-7

    Article  CAS  PubMed  Google Scholar 

  • Rajanaidu N, Jalani BS, Kushairi A, Rafii M, Mohd Din A (1996) Breeding for high kernelplanting material: PORIM Series 3 (PS3). PORIM Information series No. 59. PORIM TT No.41, Malaysian palm Oil Board, Bangi

  • Rance KA, Mayes S, Price Z, Jack PL, Corley RHV (2001) Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq). Theor Appl Genet 103:1302–1310

    CAS  Google Scholar 

  • Rees AR (1965) Evidence for the African origin of the oil palm. Principes 9:30–36

    Google Scholar 

  • Resende JFR, et al (2012) Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.) Genetics. https://doi.org/10.1534/genetics.111.137026.

  • Reyes PA, Ochoa JC, Montoya C, Daza E, Ayala IM (2015) Development and validation of a bi-directional allele-specific PCR tool for differentiation in nurseries of dura, tenera and pisifera oil palms. Agronom Colomb 33(1):5–10

    Google Scholar 

  • Riju A, Arumugam C, Arunachalam V (2007) Mining for single nucleotide polymorphisms and insertions/deletions in expressed sequence tag libraries of oil palm. Bioinformation 2(4):128–131

    PubMed  PubMed Central  Google Scholar 

  • Riquet J, Coppieters W, Cambisano N, Arranz JJ, Berzi P, Davis S, Grisart B, Farnir Karim L, Mni M et al (1999) Identity-by-descent fine-mapping of QTL in outbred populations: Application to milk production in dairy cattle. Proc Natl Acad Sci 96:9252–9257

    CAS  PubMed  Google Scholar 

  • Ritter E, Armentia ER, Erika P, Herrero J et al (2016) Development of a molecular marker system to distinguish shell thickness in oil palm genotypes. Euphytica 207:367–376

    CAS  Google Scholar 

  • Robertsen CD, Hjortshøj RL, Janss LL (2019) Genomic Selection in Cereal Breeding. Agronomy 9:95

  • Rosenquist EA (1986) The genetic base of oil palm breeding populations. In: Soh AC, Rajanaidu N, Mohd Nasir HB, Pamin K, Muluk C (eds) Proceedings of the workshop on progress of oil palm breeding populations. Palm Oil Research Institute, Kuala Lumpur, pp 16–27

  • Ruiz M, Rouard M, Raboin LM, Lartaud M, Lagoda P, Courtois B (2014) TropGENE-DB, a multi tropical crop information system. Nucleic Acids Res 32:D364–D367

    Google Scholar 

  • Sahebi M, Hanafi MM, Akmar ASN, Rafii MY, Azizi P, Idris A (2015) Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove. Gene 556:170–181

    CAS  PubMed  Google Scholar 

  • Sanusi NSNM, Rosli R, Halim MAA et al (2018) PalmXplore: oil palm gene database. Database. https://doi.org/10.1093/database/bay095

    Article  PubMed  PubMed Central  Google Scholar 

  • Sariah M, Paterson RRM, Abidin Z, Lima MA (2011) Ergosterol analyses of oil palm seedlings and plants infected with Ganoderma. Crop Protect 30:1438–1442

    Google Scholar 

  • Scarpeci T, Zanor MI, Mueller-Roeber B, Valle EM (2013) Overexpression of AtWRKY30 enhences abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol Biol 83:265–277

    CAS  PubMed  Google Scholar 

  • Schultes RE (1990) Taxonomic, nomenclatural and ethnobotanic notes on Elaeis. Elaeis 2:172–187

    Google Scholar 

  • Seng TY et al (2011) Genetic linkage map of a high yielding FELDAdeli x yangambi oil palm cross. PLoS ONE 6:e26593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    CAS  PubMed  Google Scholar 

  • Shah FH, Rasid O, Simo AJ, Dunsdon A (1994) The utility of RAPD markers for the determination of genetic variation in oil pal, (Elaeis guineensis). Theor Appl Genet 89:713–718

    CAS  PubMed  Google Scholar 

  • Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LC, Low E et al (2009) Mapping quantitative trait loci (QTLs) for fatty acid composition in an inter specific cross of oil palm. BMC Plant Biol 9:114. https://doi.org/10.1186/1471-2229-9-114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R et al (2013) Oil palm genome sequence reveals divergence of inter fertile species in old and new worlds. Nature 500:335–339. https://doi.org/10.1038/nature12309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skeaff CM, Jody M (2009) Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Ann Nutr Metab 55:173–201

    CAS  PubMed  Google Scholar 

  • Soh AC (2017) Applications and challenges of biotechnology in oil palm breeding. Int BiotechnolConf Estate Crops. https://doi.org/10.1088/1755-1315/183/1/012002

    Article  Google Scholar 

  • Tan YC, Yeoh KA, Wong MY, Ho CL (2013) Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonised by Ganoderma boninense. J Plant Physiol 170:1455–1460

    CAS  PubMed  Google Scholar 

  • Teh CK, Ong AL, Kwong AS, Chew FT, Mayes S, Mohamed M, David A, Harikrishna K (2016) Genome-wide association study identifies three key loci for high mesocarp oil content in perennial crop oil palm. Sci Rep 6:19075. https://doi.org/10.1038/srep19075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting NC, Zaki NM, Rosle R, Low ET, Maizura I, Cheah AC, Tan SG, Singh R (2010) SSR mining in oil palm EST database: application in oil palm germplasm diversity studies. J Genet 89:135–145

    PubMed  Google Scholar 

  • Tisné S, Pomiès V, Riou V, Syahputra I, Cochard B et al (2017) Identification of Ganoderma disease resistance loci using natural field infection of an oil palm multiparental population. G3(7):1683–1692

    Google Scholar 

  • Ukoskit K, Vipavee C, Ganlayarat B, Kwanjai P, Sithichoke T, Somvong T (2014) Oil palm (Elaeis guineensis Jacq.) linkage map, and quantitative trait locus analysis for sex ratio and related traits. Mol Breed 33:415–424

    CAS  Google Scholar 

  • Utomo C, Tanjung ZA, Aditama R, Buana RFN, Pratomo ADM, Tryono R, Liwang T (2018) Draft genome sequence of the phytopathogenic fungus Ganoderma boninense, the causal agent of basal stem rot disease on oil palm. Genome Announc 6:e00122-e218. https://doi.org/10.1128/genomeA.00122-18

    Article  PubMed  PubMed Central  Google Scholar 

  • von Nocker S, Gardiner S (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022

    PubMed  PubMed Central  Google Scholar 

  • Wong CK, Bernardo R (2008) Genome wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    CAS  Google Scholar 

  • Xiao Y, Zhou L, Lei X, Cao H, Wang Y, Dou Y et al (2017) Genome-wide identification of WRKY genes and their expression profiles under different abiotic stresses in Elaeis guineensis. PLoS ONE 12(12):e0189224

    PubMed  PubMed Central  Google Scholar 

  • Zulkifli Y, Mohd Husri (2018) Designing the oil palm of the future. J. Oil Palm Res 29:440–455

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BK, RKM, Writing: BK, RKM, GR, PA, Reviewing and editing: BK, RKM, HPB.

Corresponding author

Correspondence to B. Kalyana Babu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, B.K., Mathur, R.K., Anitha, P. et al. Phenomics, genomics of oil palm (Elaeis guineensis Jacq.): way forward for making sustainable and high yielding quality oil palm. Physiol Mol Biol Plants 27, 587–604 (2021). https://doi.org/10.1007/s12298-021-00964-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-00964-w

Keywords

Navigation